Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson ; 296: 138-142, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30261338

RESUMEN

Gaining access to electron spin dynamics at (sub-)THz frequencies is highly challenging. However, this information is highly relevant for the understanding and development of spin polarization agents in dynamic nuclear polarization methods and single-molecule magnets for quantum computation. Here we demonstrate the first rapid-scan EPR experiment in 200 GHz frequency region. A voltage controlled oscillator (VCO) generated fast sinusoidal frequency sweeps with scan rates up to 3×105 THz/s after the frequency multiplication, which is equal to 107 T/s in field representation. Such high scan rates provide access to extremely short relaxation times T2=2π×sweeprate-0.5≈1 ns. The absence of a microwave cavity allowed us to perform multi-frequency experiments in the 170-250 GHz range. A further advantage of a cavity-less approach is the possibility to use vast sweeps, which in turn, allows the deconvolution using a linear sweep function. The deconvoluted spectra obtained with this method are identical to the slow-rate spectrum. We find spin-spin relaxation times of several nanoseconds for pure LiPc samples in this frequency range. These values cannot be obtained by means of conventional pulsed EPR methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA