Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 60, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373929

RESUMEN

BACKGROUND: The impact of probiotic strains on host health is widely known. The available studies on the interaction between bacteria and the host are focused on the changes induced by bacteria in the host mainly. The studies determining the changes that occurred in the bacteria cells are in the minority. Within this paper, we determined what happens to the selected Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with the intestinal epithelial layer. For this purpose, we tested the bacteria cells' viability, redox activity, membrane potential and enzymatic activity in different environments, including CaCo-2/HT-29 co-culture, cell culture medium, presence of inflammatory inductor (TNF-α) and oxygen. RESULTS: We indicated that the external milieu impacts the viability and vitality of bacteria. Bifidobacterium adolescentis decrease the size of the live population in the cell culture medium with and without TNF-α (p < 0.001 and p < 0.01 respectively). In contrast, Bifidobacterium longum ssp. longum significantly increased survivability in contact with the eukaryotic cells and cell culture medium (p < 0.001). Bifidobacterium adolescentis showed significant changes in membrane potential, which was decreased in the presence of eukaryotic cells (p < 0.01), eukaryotic cells in an inflammatory state (p < 0.01), cell culture medium (p < 0.01) and cell culture medium with TNF-α (p < 0.05). In contrast, Bifidobacterium longum ssp. longum did not modulate membrane potential. Instead, bacteria significantly decreased the redox activity in response to milieus such as eukaryotic cells presence, inflamed eukaryotic cells as well as the culture medium (p < 0.001). The redox activity was significantly different in the cells culture medium vs the presence of eukaryotic cells (p < 0.001). The ability to ß-galactosidase production was different for selected strains: Bifidobacterium longum ssp. longum indicated 91.5% of positive cells, whereas Bifidobacterium adolescentis 4.34% only. Both strains significantly reduced the enzyme production in contact with the eukaryotic milieu but not in the cell culture media. CONCLUSION: The environmental-induced changes may shape the probiotic properties of bacterial strains. It seems that the knowledge of the sensitivity of bacteria to the external environment may help to select the most promising probiotic strains, reduce research costs, and contribute to greater reproducibility of the obtained probiotic effects.


Asunto(s)
Bifidobacterium adolescentis , Bifidobacterium longum , Bifidobacterium , Probióticos , Humanos , Factor de Necrosis Tumoral alfa , Células CACO-2 , Células Eucariotas , Reproducibilidad de los Resultados , Bacterias
2.
Environ Sci Technol ; 58(40): 17756-17765, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39323212

RESUMEN

Humic substances are organic substances prevalent in various natural environments, such as wetlands, which are globally important sources of methane (CH4) emissions. Extracellular electron transfer (EET)-mediated anaerobic oxidation of methane (AOM)-coupled with humic substances reduction plays an important role in the reduction of methane emissions from wetlands, where magnetite is prevalent. However, little is known about the magnetite-mediated EET mechanisms in AOM-coupled humic substances reduction. This study shows that magnetite promotes the reduction of the AOM-coupled humic substances model compound, anthraquinone-2,6-disulfonate (AQDS). 13CH4 labeling experiments further indicated that AOM-coupled AQDS reduction occurred, and acetate was an intermediate product of AOM. Moreover, 13CH313COONa labeling experiments showed that AOM-generated acetate can be continuously reduced to methane in a state of dynamic equilibrium. In the presence of magnetite, the EET capacity of the microbial community increased, and Methanosarcina played a key role in the AOM-coupled AQDS reduction. Pure culture experiments showed that Methanosarcina barkeri can independently perform AOM-coupled AQDS reduction and that magnetite increased its surface protein redox activity. The metatranscriptomic results indicated that magnetite increased the expression of membrane-bound proteins involved in energy metabolism and electron transfer in M. barkeri, thereby increasing the EET capacity. This phenomenon potentially elucidates the rationale as to why magnetite promoted AOM-coupled AQDS reduction.


Asunto(s)
Óxido Ferrosoférrico , Sustancias Húmicas , Metano , Oxidación-Reducción , Metano/metabolismo , Anaerobiosis , Transporte de Electrón , Óxido Ferrosoférrico/química
3.
Mikrochim Acta ; 191(3): 166, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418675

RESUMEN

The evaluation of electrochemical sensing activity of hydrothermally derived PPy-MoS2-based nanocomposites subjected to 90 MeV C6+ ion beam with fluence ranging, 1.0 × 1010-1.0 × 1013 ions/cm2, is reported. Cross-linking, chain scissioning, and ion track formation could occur in the irradiated systems, as revealed from Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) studies. Electrochemical studies, viz., cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed in 0.1 M phosphate buffer solution (PBS) containing 5 mM K3[Fe(CN)6] as redox probe. High redox activity, lower charge transfer resistance (Rct = 490 Ω) and larger electroactive area (A = 0.4485 cm2) were obtained in case of the composite system irradiated with a fluence of 3.5 × 1011 ions/cm2. Immunosensor fabrication was executed via immobilization of mouse IgG over the pristine and post-irradiated electrodes. Afterwards, differential pulse voltammetry (DPV) was performed within the potential window - 0.2 to + 0.6 V (vs. Ag/AgCl) for the detection of specific analyte. Noticeably, the electrode system irradiated with a fluence of 3.5 × 1011 ions/cm2 is characterized by a lower limit of detection (LOD) of 0.203 nM and a higher sensitivity value of 10.0 µA mL ng-1 cm-2. The energetic particle irradiation at a modest fluence can offer beneficial effects to the PPy-MoS2-based nanohybrid system providing immense scope as advanced electrochemical biosensor.

4.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38339139

RESUMEN

Macrophages are the major players and orchestrators of inflammatory response. Expressed proteins and secreted cytokines have been well studied for two polar macrophage phenotypes-pro-inflammatory M1 and anti-inflammatory regenerative M2, but little is known about how the polarization modulates macrophage functions. In this study, we used biochemical and biophysical methods to compare the functional activity and mechanical properties of activated human macrophages differentiated from monocyte with GM-CSF (M0_GM) and M-CSF (M0_M) and polarized into M1 and M2 phenotypes, respectively. Unlike GM-CSF, which generates dormant cells with low activity, M-CSF confers functional activity on macrophages. M0_M and M2 macrophages had very similar functional characteristics-high reactive oxygen species (ROS) production level, and higher phagocytosis and survival compared to M1, while M1 macrophages showed the highest radical-generating activity but the lowest phagocytosis and survival among all phenotypes. All phenotypes decreased their height upon activation, but only M1 and M2 cells increased in stiffness, which can indicate a decrease in the migration ability of these cells and changes in their interactions with other cells. Our results demonstrated that while mechanical properties differ between M0 and polarized cells, all four phenotypes of monocyte-derived macrophages differ in their functional activities, namely in cytokine secretion, ROS production, and phagocytosis. Within the broad continuum of human macrophages obtained in experimental models and existing in vivo, there is a diversity of phenotypes with varying combinations of both markers and functional activities.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Factor Estimulante de Colonias de Macrófagos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Fagocitosis , Fenotipo
5.
Angew Chem Int Ed Engl ; : e202411110, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264261

RESUMEN

Bidentate N-ligands are paramount to recent advances in nickel-catalyzed cross-coupling reactions. Through comprehensive organometallic, spectroscopic, and computational studies on bi-oxazoline and imidazoline ligands, we reveal that a square planar geometry enables redox activity of these ligands in stabilizing nickel radical species. This finding contrasts with the prior assumption that bi-oxazoline lacks redox activity due to strong mesomeric donation. Moreover, we conducted systematic cyclic voltammetry (CV) analyses of bidentate pyridyl, oxazoline, and imidazoline nitrogen ligands, along with their corresponding nickel complexes. Complexation with nickel shifts the reduction potentials to a more positive region and narrows the differences in redox potentials among the ligands. Additionally, various ligands led to different degrees of bromide dissociation from singly reduced (L)Ni(Ar)(Br) complexes, reflecting varying reactivity in the subsequent activation of alkyl halides, a crucial step in cross-electrophile coupling. These insights highlight the significant electronic effects of ligands on the stability of metalloradical species and their redox potentials, which interplay with coordination geometry. Quantifying the electron-donating, p-accepting properties of these ligands, as well as their effect on catalyst speciation, provides crucial benchmarks for controlling catalytic activity and enhancing catalyst stability.

6.
Angew Chem Int Ed Engl ; 63(36): e202407279, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38872356

RESUMEN

Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.

7.
Angew Chem Int Ed Engl ; 63(29): e202405620, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709194

RESUMEN

Manganese-based layered oxides are currently of significant interest as cathode materials for sodium-ion batteries due to their low toxicity and high specific capacity. However, the practical applications are impeded by sluggish intrinsic Na+ migration and poor structure stability as a result of Jahn-Teller distortion and complicated phase transition. In this study, a high-entropy strategy is proposed to enhance the high-voltage capacity and cycling stability. The designed P2-Na0.67Mn0.6Cu0.08Ni0.09Fe0.18Ti0.05O2 achieves a deeply desodiation and delivers charging capacity of 158.1 mAh g-1 corresponding to 0.61 Na with a high initial Coulombic efficiency of 98.2 %. The charge compensation is attributed to the cationic and anionic redox reactions conjunctively. Moreover, the crystal structure is effectively stabilized, leading to a slight variation of lattice parameters. This research carries implications for the expedited development of low-cost, high-energy-density cathode materials for sodium-ion batteries.

8.
Angew Chem Int Ed Engl ; : e202417493, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292224

RESUMEN

The rational design of porous covalent organic frameworks (COFs) with high conductivity and reversible redox activity is the key to improving their performance in sodium-ion batteries (SIBs). Herein, we report a series of COFs (FPDC-TPA-COF, FPDC-TPB-COF, and FPDC-TPT-COF) based on an organosulfur linker, (trioxocyclohexane-triylidene)tris(dithiole-diylylidene))hexabenzaldehyde (FPDC). These COFs feature two-dimensional crystalline structures, high porosity, good conductivity, and densely packed redox-active sites, making them suitable for energy storage devices. Among them, FPDC-TPT-COF demonstrates a remarkably high specific capacity of 420 mAh g-1 (0.2 A g-1), excellent cycling stability (~87% capacity retention after 3000 cycles, 1.0 A g-1) and high rate performance (339 mAh g-1 at 2.0 A g-1) as an anode for SIBs, surpassing most reported COF-based electrodes. The superior performance is attributed to the dithiole moieties enhancing the conductivity and the presence of redox-active carbonyl, imine, and triazine sites facilitating Na storage. Furthermore, the sodiation mechanism was elucidated through in-situ experiments and density functional theory (DFT) calculations. This work highlights the advantages of integrating multiple functional groups into redox-active COFs for the rational design of efficient and stable SIBs.

9.
Small ; 19(21): e2300175, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843265

RESUMEN

The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.

10.
Biogerontology ; 24(1): 47-66, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36030453

RESUMEN

Due to its unique redox chemistry, nanoceria is considered as potent free radical scavenger and antioxidant. However, their protective capacity in aging organisms remains controversial. To detect the anti-aging effects associated with the redox activity of 2 and 10 nm nano-CeO2, different test systems were used, including in vitro analysis, in situ assay of mitochondria function and in vivo studies of suitable nano-CeO2 on aging of male Wistar rats from 22 months-old to the end of life. The 2 nm nanoparticles exhibited not only antioxidant (·OH scavenging; chemiluminescence assay; decomposition of H2O2, phosphatidylcholine autooxidation) but also prooxidant properties (reduced glutathione and reduced nicotinamide adenine dinucleotide phosphate oxidation) as well as affected mitochondria whereas in most test systems 10 nm nano-CeO2 showed less activity or was inert. Prolonged use of the more redox active 2 nm nano-CeO2 (0.25-0.3 mg/kg/day) in vivo with drinking water resulted in improvement in physiological parameters and normalization of the prooxidant/antioxidant balance in liver and blood of aging animals. Survival analysis using Kaplan-Meier curve and Gehan tests with Yates' correction showed that by the time the prooxidant-antioxidant balance was assessed (32 months), survival rates exceeded the control values most considerably. The apparent median survival for the control rats was 900 days, and for the experimental rats-960 days. In general, the data obtained indicate the ability of extra-small 2 nm nano-CeO2 to improve quality of life and increase the survival rate of an aging organism.


Asunto(s)
Antioxidantes , Nanopartículas , Masculino , Ratas , Animales , Especies Reactivas de Oxígeno , Calidad de Vida , Peróxido de Hidrógeno , Ratas Wistar , Nanopartículas/química
11.
Environ Res ; 219: 115142, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566968

RESUMEN

Humic substances (HS) can facilitate electron transfer during biogeochemical processes due to their redox properties, but the structure-redox activity relationships are still difficult to describe and poorly understood. Herein, the linear (Partial Least Squares regressions; PLS) and nonlinear (artificial neural network; ANN) models were applied to monitor the structure dependence of HS redox activities in terms of electron accepting (EAC), electron donating (EDC) and overall electron transfer capacities (ETC) using its physicochemical features as input variables. The PLS model exhibited a moderate ability with R2 values of 0.60, 0.53 and 0.65 to evaluate EAC, EDC and ETC, respectively. The variable influence in the projection (VIP) scores of the PLS identified that the phenols, quinones and aromatic systems were particularly important for describing the redox activities of HS. Compared with the PLS model, the back-propagation ANN model achieved higher performance with R2 values of 0.81, 0.65 and 0.78 for monitoring the EAC, EDC and ETC, respectively. Sensitivity analysis of the ANN separately identified that the EAC highly depended on quinones, aromatics and protein-like fluorophores, while the EDC depended on phenols, aromatics and humic-like fluorophores (or stable free radicals). Additionally, carboxylic groups were the best indicator for evaluating both the EAC and EDC. Good model performances were obtained from the selected features via the PLS and sensitivity analysis, further confirming the accuracy of describing the structure-redox activity relationships with these analyses. This study provides a potential approach for identifying the structure-activity relationships of HS and an efficient machine-learning model for predicting HS redox activities.


Asunto(s)
Electrones , Sustancias Húmicas , Sustancias Húmicas/análisis , Oxidación-Reducción
12.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834751

RESUMEN

The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to attract the attention of researchers as a structural framework for the development of new cytotoxic compounds. In this study, a series of titanocene (IV) carboxylate complexes, both new and those known from the literature, was synthesized, and their structures were confirmed by a complex of physicochemical methods and X-ray diffraction analysis (including one previously unknown structure based on perfluorinated benzoic acid). The comprehensive comparison of three approaches for the synthesis of titanocene derivatives known from the literature (the nucleophilic substitution of chloride anions of titanocene dichloride with sodium and silver salts of carboxylic acids as well as the reaction of dimethyltitanocene with carboxylic acids themselves) made it possible to optimize these methods to obtain higher yields of individual target compounds, generalize the advantages and disadvantages of these techniques, and determine the substrate frames of each method. The redox potentials of all obtained titanocene derivatives were determined by cyclic voltammetry. The relationship between the structure of ligands, the reduction potentials of titanocene (IV), and their relative stability in redox processes, as obtained in this work, can be used for the design and synthesis of new effective cytotoxic titanocene complexes. The study of the stability of the carboxylate-containing derivatives of titanocene obtained in the work in aqueous media showed that they were more resistant to hydrolysis than titanocene dichloride. Preliminary tests of the cytotoxicity of the synthesised titanocene dicarboxilates on MCF7 and MCF7-10A cell lines demonstrated an IC50 ≥ 100 µM for all the obtained compounds.


Asunto(s)
Antineoplásicos , Compuestos Organometálicos , Humanos , Electroquímica , Compuestos Organometálicos/química , Antineoplásicos/química , Células MCF-7 , Ácidos Carboxílicos
13.
Molecules ; 28(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903333

RESUMEN

Herein, we describe the synthesis, crystal structure, and electronic properties of {[K2(dmso)(H2O)5][Ni2(H2mpba)3]·dmso·2H2O}n (1) and [Ni(H2O)6][Ni2(H2mpba)3]·3CH3OH·4H2O (2) [dmso = dimethyl sulfoxide; CH3OH = methanol; and H4mpba = 1,3-phenylenebis(oxamic acid)] bearing the [Ni2(H2mpba)3]2- helicate, hereafter referred to as {NiII2}. SHAPE software calculations indicate that the coordination geometry of all the NiII atoms in 1 and 2 is a distorted octahedron (Oh) whereas the coordination environments for K1 and K2 atoms in 1 are Snub disphenoid J84 (D2d) and distorted octahedron (Oh), respectively. The {NiII2} helicate in 1 is connected by K+ counter cations yielding a 2D coordination network with sql topology. In contrast to 1, the electroneutrality of the triple-stranded [Ni2(H2mpba)3] 2- dinuclear motif in 2 is achieved by a [Ni(H2O)6]2+ complex cation, where the three neighboring {NiII2} units interact in a supramolecular fashion through four R22(10) homosynthons yielding a 2D array. Voltammetric measurements reveal that both compounds are redox active (with the NiII/NiI pair being mediated by OH- ions) but with differences in formal potentials that reflect changes in the energy levels of molecular orbitals. The NiII ions from the helicate and the counter-ion (complex cation) in 2 can be reversibly reduced, resulting in the highest faradaic current intensities. The redox reactions in 1 also occur in an alkaline medium but at higher formal potentials. The connection of the helicate with the K+ counter cation has an impact on the energy levels of the molecular orbitals; this experimental behavior was further supported by X-ray absorption near-edge spectroscopy (XANES) experiments and computational calculations.

14.
Angew Chem Int Ed Engl ; 62(25): e202303375, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37070765

RESUMEN

The head-to-tail dimerization of N-heterocyclic diazoolefins is described. The products of these formal (3+3) cycloaddition reactions are strongly reducing quinoidal tetrazines. Oxidation of the tetrazines occurs in a stepwise fashion, and we were able to isolate a stable radical cation and diamagnetic dications. The latter are also accessible by oxidative dimerization of diazoolefins.


Asunto(s)
Compuestos Heterocíclicos , Dimerización , Reacción de Cicloadición , Cationes , Oxidación-Reducción
15.
J Appl Microbiol ; 132(4): 3017-3027, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34967081

RESUMEN

AIM: To measure the biological activities of extracts of fodder grasses Onobrýchis arenária, Galéga orientális and Rhaponticum carthamoides that are commonly planted in Europe, Middle East and eastern Africa. METHODS AND RESULTS: Microbial test-systems based on Escherichia coli BW25113 that allow measurement of gene expression, growth and survival, biofilm formation (BF) in combination with the standard chemical procedures were used. The extracts studied had radical scavenging and metal-chelating activities and induced expression of antioxidant genes via generation of hydrogen peroxide. However, the extracts did not affect bacterial growth in planktonic cultures but dose-dependently inhibited BF. CONCLUSIONS: The most remarkable effects were observed in G. orientalis, a high-yielding crop, rich in crude protein and fibres. SIGNIFICANCE AND IMPACT OF THE STUDY: Taking into account the antibiofilm activities of the extracts, a perspective for decreasing colonization of ruminants' gut with pathogenic bacteria might be suggested in case of feeding with all the grasses studied.


Asunto(s)
Antioxidantes , Poaceae , Alimentación Animal , Antioxidantes/química , Antioxidantes/farmacología , Bacterias , Biopelículas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología
16.
Biochem J ; 478(17): 3281-3295, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34409988

RESUMEN

The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas/metabolismo , Azufre/metabolismo , Monóxido de Carbono/metabolismo , Dominio Catalítico , Disulfuros/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Electrones , Escherichia coli/genética , Iones/metabolismo , Ligandos , Oxidación-Reducción , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectroscopía de Mossbauer/métodos
17.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807293

RESUMEN

Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.


Asunto(s)
Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Compuestos Heterocíclicos , Ligandos , Oxidación-Reducción
18.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431793

RESUMEN

Organic small molecules with electrochemically active and reversible redox groups are excellent candidates for energy storage systems due to their abundant natural origin and design flexibility. However, their practical application is generally limited by inherent electrical insulating properties and high solubility. To achieve both high energy density and power density, organic small molecules are usually immobilized on the surface of a carbon substrate with a high specific surface area and excellent electrical conductivity through non-covalent interactions or chemical bonds. The resulting composite materials are called organic small-molecule electrodes (OMEs). The redox reaction of OMEs occurs near the surface with fast kinetic and higher utilization compared to storing charge through diffusion-limited Faraday reactions. In the past decade, our research group has developed a large number of novel OMEs with different connections or molecular skeletons. This paper introduces the latest development of OMEs for efficient energy storage. Furthermore, we focus on the design motivation, structural advantages, charge storage mechanism, and various electrode parameters of OMEs. With small organic molecules as the active center, OMEs can significantly improve the energy density at low molecular weight through proton-coupled electron transfer, which is not limited by lattice size. Finally, we outline possible trends in the rational design of OMEs toward high-performance supercapacitors.

19.
Chemistry ; 27(35): 8951-8955, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33851483

RESUMEN

5,11-Diazadibenzo[hi,qr]tetracene was synthesized as a new nitrogen-substituted polycyclic heteroaromatic compound by Pd-catalyzed cycloisomerization of an alkyne precursor followed by oxidative cyclization with bis(trifluoroacetoxy)iodobenzene. The substitution of imine-type nitrogen atoms significantly enhanced its electron-accepting character and facilitated the direct nucleophilic addition of arylamines under strongly basic conditions to afford the desired amino-substituted products. The introduction of amino groups induced a remarkable red-shift in their absorption spectra; the tetrasubstituted product exhibited intense near-infrared absorbing property. Furthermore, the π-electronic system, which includes a redox-active 1,4-diazabutadiene moiety, underwent reversible interconversion to its corresponding reduced form upon reduction with NaBH4 and aerobic oxidation.

20.
Molecules ; 26(8)2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33920084

RESUMEN

Novel bistetrakis-4-[3-(3,4-dicyanophenoxy)phenoxy]phthalocyaninato of complexes erbium, lutetium and ytterbium were synthesized using a template fusion method to prevent any polymerization process. The complexes were separated from the reaction mixtures and characterized by NMR, IR and electron absorption spectroscopy. The spectroscopic properties of the metal phthalocyaninates in chloroform, acetone and tetrahydrofuran were studied. The regular bathochromic shift in the Er-Yb-Lu series was determined. In acetone medium all the complexes obtained were found to exist in an equilibrium state between neutral and reduced forms. The linearity of Lambert-Bouger-Beer curves makes it possible to study the kinetics of redox processes in the presence of phenylhydrazine and bromine. The lutetium complex showed better reducing properties and turned fully into the reduced form, while the erbium and ytterbium ones changed only partially. Upon oxidizing all the phthalocyaninates transformed into a mixture of oxidized and neutral-radical forms. The extinction coefficients and effective redox constants were calculated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA