Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.462
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2220828120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848551

RESUMEN

Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.


Asunto(s)
Leishmania donovani , Psychodidae , Humanos , Animales , Estrés Oxidativo/genética , Reparación del ADN/genética , Mutación
2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147391

RESUMEN

In recent years, brain imaging genomics has advanced significantly in revealing underlying pathological mechanisms of Alzheimer's disease (AD) and providing early diagnosis. In this paper, we present a framework for diagnosing AD that integrates magnetic resonance imaging (fMRI) genetic preprocessing, feature selection, and a support vector machine (SVM) model. In particular, a novel sand cat swarm optimization (SCSO) algorithm, named SS-SCSO, which integrates the spiral search strategy and alert mechanism from the sparrow search algorithm, is proposed to optimize the SVM parameters. The optimization efficacy of the SS-SCSO algorithm is evaluated using CEC2017 benchmark functions, with results compared with other metaheuristic algorithms (MAs). The proposed SS-SCSO-SVM framework has been effectively employed to classify different stages of cognitive impairment in Alzheimer's Disease using imaging genetic datasets from the Alzheimer's Disease Neuroimaging Initiative. It has demonstrated excellent classification accuracies for four typical cases, including AD, early mild cognitive impairment, late mild cognitive impairment, and healthy control. Furthermore, experiment results indicate that the SS-SCSO-SVM algorithm has a stronger exploration capability for diagnosing AD compared to other well-established MAs and machine learning techniques.


Asunto(s)
Algoritmos , Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Máquina de Vectores de Soporte , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Genómica de Imágenes/métodos , Neuroimagen/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Masculino , Anciano , Femenino
3.
BMC Plant Biol ; 24(1): 533, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862876

RESUMEN

Dragon fruit (Selenicereus undatus), known for its captivating appearance and remarkable nutritional profile, has garnered considerable attention in recent years. Despite its popularity, there's a dearth of research on optimal conditions for seed germination and early growth stages such as seedling shoot length, which are crucial for optimal crop yield. This study aims to bridge this gap by evaluating various growing media's performance on dragon fruit germination and early growth stages. Dragon fruit seeds were obtained from local markets in Pakistan and evaluated in five different growing media: cocopeat, peat moss, sand, vermiculite, and compost. Germination parameters were observed for 45 days, including seed germination percentage, mean germination time, and mean daily germination percentage, among others while early growth was monitored for 240 days. Statistical analysis was conducted using ANOVA and Tukey's HSD test. Significant differences were found among the growing media regarding germination percentage, mean germination time, and mean daily germination. Vermiculite exhibited the highest germination rate (93.33%), while compost showed the least (70%). Peat moss and sand media facilitated rapid germination, while compost showed slower rates. Stem length was significantly influenced by the growth media, with compost supporting the longest stems. Vermiculite emerged as the most effective medium for dragon fruit seed germination, while compost showed slower but steady growth. These findings provide valuable insights for optimizing dragon fruit cultivation, aiding commercial growers and enthusiasts in achieving higher yields and quality. Further research could explore additional factors influencing dragon fruit growth and development.


Asunto(s)
Medios de Cultivo , Frutas , Germinación , Frutas/crecimiento & desarrollo , Frutas/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Plantones/crecimiento & desarrollo , Cactaceae
4.
Small ; : e2402946, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881253

RESUMEN

Oil-water separation based on superwettable materials offers a promising way for the treatment of oil-water mixtures and emulsions. Nevertheless, such separation techniques often require complex devices and external energy input. Therefore, it remains a great challenge to separate oil-water mixtures and emulsions through an energy-efficient, economical, and sustainable way. Here, a novel approach demonstrating the successful separation of oil-water emulsions using antigravity-driven autonomous superwettable pumps is presented. By transitioning from traditional gravity-driven to antigravity-driven separation, the study showcases the unprecedented success in purifying oil/water from emulsions by capillary/siphon-driven superwettable autonomous pumps. These pumps, composed of self-organized interconnected channels formed by the packing of superhydrophobic and superhydrophilic sand particles, exhibit outstanding separation flux, efficiency, and recyclability. The findings of this study not only open up a new avenue for oil-water emulsion separation but also hold promise for profound impacts in the field.

5.
Appl Environ Microbiol ; 90(4): e0225323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440988

RESUMEN

We evaluated a unique model in which four full-scale wastewater treatment plants (WWTPs) with the same treatment schematic and fed with similar influent wastewater were tracked over an 8-month period to determine whether the community assembly would differ in the activated sludge (AS) and sand filtration (SF) stages. For each WWTP, AS and SF achieved an average of 1-log10 (90%) and <0.02-log10 (5%) reduction of total cells, respectively. Despite the removal of cells, both AS and SF had a higher alpha and beta diversity compared to the influent microbial community. Using the Sloan neutral model, it was observed that AS and SF were individually dominated by different assembly processes. Specifically, microorganisms from influent to AS were predominantly determined by the selective niche process for all WWTPs, while the microbial community in the SF was relatively favored by a stochastic, random migration process, except two WWTPs. AS also contributed more to the final effluent microbial community compared with the SF. Given that each WWTP operates the AS independently and that there is a niche selection process driven mainly by the chemical oxygen demand concentration, operational taxonomic units unique to each of the WWTPs were also identified. The findings from this study indicate that each WWTP has its distinct microbial signature and could be used for source-tracking purposes.IMPORTANCEThis study provided a novel concept that microorganisms follow a niche assembly in the activated sludge (AS) tank and that the AS contributed more than the sand filtration process toward the final microbial signature that is unique to each treatment plant. This observation highlights the importance of understanding the microbial community selected by the AS stage, which could contribute toward source-tracking the effluent from different wastewater treatment plants.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Arena , Ríos , Aguas Residuales
6.
Mol Phylogenet Evol ; 199: 108157, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029550

RESUMEN

Recent advances in sequencing technology and phylogenetic methods allow us to solve puzzling taxonomic questions using detailed analyses of genetic diversity of populations and gene flow between them. The genus of solitary-living dune mole-rat, Bathyergus, is quite unique among six genera of African mole-rats. The animals are by far the largest and the only scratch digging mole-rat genus possessing a skull less adapted to digging, grooved upper incisors, and more surface locomotor activity. Most authors recognize two species of dune mole-rats, B. suillus and B. janetta, but according to others, the genus is monotypic. In addition, recent molecular studies have revealed cryptic genetic diversity and suggested the existence of up to four species. In our study, we used mitochondrial and genome-wide nuclear data collected throughout the distribution of the genus to investigate the number of species. In agreement with previous studies, we found Bathyergus to be differentiated into several distinct lineages, but we also found evidence for a degree of gene flow between some of them. Furthermore, we confirmed that B. janetta is nested within B. suillus, making the latter paraphyletic and we documented an instance of local mitochondrial introgression between these two nominal species. Phylogeographic structure of the genus was found to be very shallow. Although traditionally dated to the Miocene, we found the first split within the genus to be much younger estimated to 0.82 Ma before present. Genealogical distinctiveness of some lineages was very low, and the coancestry matrix showed extensive sharing of closely related haplotypes throughout the genus. Accordingly, Infomap clustering on the matrix showed all populations to form a single cluster. Overall, our study tends to support the existence of only one species of Bathyergus namely, B. suillus. Environmental niche modelling confirmed its dependence on sandy soils and the preference for soils with relatively high carbon content. Bayesian skyline plots indicate recent population decline in the janetta lineage, probably related to global environmental change.


Asunto(s)
ADN Mitocondrial , Flujo Génico , Variación Genética , Ratas Topo , Filogenia , Animales , Ratas Topo/genética , Ratas Topo/clasificación , ADN Mitocondrial/genética , Teorema de Bayes , Análisis de Secuencia de ADN , Núcleo Celular/genética , África
7.
Artículo en Inglés | MEDLINE | ID: mdl-37261561

RESUMEN

Pit building antlions Euroleon nostras have been submitted to artificial cues in order to delineate their faculty to localize a prey. Series of propagating pulses in sand have been created from an extended source made of 10 piezoelectric transducers equally spaced on a line and located at a large distance from the pit. The envelope of each pulse encompasses six oscillations at a carrier frequency of 1250 Hz and up to eight oscillations at 1666 Hz. In one set of experiments, the first wave front is followed by similar wave fronts and the antlions respond to the cue by throwing sand in the opposite direction of the wave front propagation direction. In another set of experiments, the first wave front is randomly spatially structured while the propagation of the wave fronts inside the envelope of the pulse are not. In that case, the antlions respond less to the cue by throwing sand, and when they do, their sand throwing is more randomly distributed in direction. The finding shows that the localization of vibration signal by antlions are based on the equivalent for hearing animals of interaural time difference in which the onset has more significance than the interaural phase difference.


Asunto(s)
Insectos , Arena , Animales , Larva/fisiología , Insectos/fisiología , Conducta Predatoria/fisiología , Señales (Psicología)
8.
Med Mycol ; 62(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38196143

RESUMEN

Fungal flora in coastal/inland beach sand and recreational water is a neglected field of study, despite its potential impact on human health. A joint International Society for Human and Animal Mycology/European Confederation for Medical Mycology (ISHAM/ECMM) working group was formed in 2019 with the task to set up a vast international initiative aimed at studying the fungal contamination of beaches and bathing waters. Here we review the importance of the topic, and list the main results and achievements from 12 scientific publications. Fungal contamination exists at different levels, and the genera most frequently found were Aspergillus spp., Candida spp., Fusarium spp., and Cryptococcus spp., both in sand and in water. A site-blind median was found to be 89 colony-forming units of fungi per gram of sand in coastal/inland freshwaters. This threshold has been used for the sand quality criterion of the blue flag in Portugal. Additionally, our data were considered pivotal and therefore used for the first inclusion of fungi as a biological taxon of interest in water quality and sand monitoring recommendations of the World Health Organization's new guidelines on recreational water quality (Vol.1-Chap7). The findings of the consortium also suggest how environmental conditions (climate, salinity, soil pH, nitrogen, etc.) influence microbial communities in different regions, and that yeast species like Candida glabrata, Clavispora lusitaniae, and Meyerozyma guilliermondii have been identified as potential fungal indicators of fecal contamination. Climate change and natural disasters may affect fungal populations in different environments, and because this is still a field of study under exploration, we also propose to depict the future challenges of research and unmet needs.


Asunto(s)
Monitoreo del Ambiente , Arena , Animales , Humanos , Monitoreo del Ambiente/métodos , Informe de Investigación , Microbiología del Agua , Levaduras , Heces/microbiología
9.
Conserv Biol ; 38(4): e14261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38571408

RESUMEN

Amid a global infrastructure boom, there is increasing recognition of the ecological impacts of the extraction and consumption of construction minerals, mainly processed as concrete, including significant and expanding threats to global biodiversity. We investigated how high-level national and international biodiversity conservation policies address mining threats, with a special focus on construction minerals. We conducted a review and quantified the degree to which threats from mining these minerals are addressed in biodiversity goals and targets under the 2011-2020 and post-2020 biodiversity strategies, national biodiversity strategies and action plans, and the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Mining appeared rarely in national targets but more frequently in national strategies. Yet, in most countries, it was superficially addressed. Coverage of aggregates mining was greater than coverage of limestone mining. We outline 8 key components, tailored for a wide range of actors, to effectively mainstream biodiversity conservation into the extractive, infrastructure, and construction sectors. Actions include improving reporting and monitoring systems, enhancing the evidence base around mining impacts on biodiversity, and modifying the behavior of financial agents and businesses. Implementing these measures could pave the way for a more sustainable approach to construction mineral use and safeguard biodiversity.


Amenazas de la minería a las políticas de alto nivel para la conservación de la biodiversidad Resumen Enmedio del auge global del desarrollo de infraestructura, hay un mayor reconocimiento de los impactos ecológicos de la extracción y consumo de materiales para construcción, procesados predominantemente como concreto. Estos materiales representan amenazas significativas y en expansión para la biodiversidad global. Investigamos cómo son abordadas las amenazas de la minería por las políticas nacionales e internacionales de alto nivel para la conservación de la biodiversidad, con enfoque especial en los minerales para construcción. Realizamos una revisión exhaustiva y cuantificamos el grado en el cual son abordadas las amenazas de la extracción de estos minerales en los objetivos y metas para la biodiversidad bajo estrategias 2011­2020 y post 2020, las estrategias y planes de acción nacionales para la biodiversidad, y las evaluaciones de la Plataforma Intergubernamental Científico­normativa sobre Diversidad Biológica y Servicios de los Ecosistemas. La minería raramente apareció en los objetivos nacionales, pero fue más frecuente en las estrategias nacionales. Sin embargo, fue abordada superficialmente en la mayoría de los países. La cobertura de minería de agregados fue mayor que la cobertura de la minería de caliza. Describimos ocho componentes clave, adaptados para una amplia gama de actores, para incorporar eficazmente la conservación de la biodiversidad en los sectores extractivo, desarrollo de infraestructura y construcción. Las acciones incluyen la mejora de los sistemas de informes y monitoreo, el reforzamiento de la base de evidencias en torno a los impactos de la minería sobre la biodiversidad y la modificación del comportamiento de los agentes financieros y comerciales. La implementación de estas medidas podría allanar el camino para un enfoque más sostenible en el uso de minerales para la construcción y la salvaguarda de la biodiversidad.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Política Ambiental , Minería , Conservación de los Recursos Naturales/métodos , Política Ambiental/legislación & jurisprudencia
10.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690765

RESUMEN

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Asunto(s)
Coloides , Restauración y Remediación Ambiental , Agua Subterránea , Agua Subterránea/química , Coloides/química , Restauración y Remediación Ambiental/métodos , Polímeros/química , Carbón Orgánico/química , Arena/química , Contaminantes Químicos del Agua/química , Carbono/química
11.
Environ Sci Technol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190587

RESUMEN

Whether maternal exposure to dust-sourced particulate matter (hereafter, dust PM2.5) is associated with stillbirth remains unknown. We adopted a sibling-matched case-control design to analyze 9332 stillbirths and 17,421 live births. We associated the risk of stillbirth simultaneously with dust and nondust components of PM2.5 and developed a nonlinear joint exposure-response function. Next, we estimated the burden of stillbirths attributable to the PM2.5 mixture. The concentration index was used to evaluate whether the burden of PM2.5-related stillbirths was disproportionally distributed among pregnancies exposed to dust-rich particles. Each 10 µg/m3 increase in dust PM2.5 was associated with a 14.5% (95% confidence interval: 5.5, 24.2%) increase in the odds of stillbirth. Based on the risk assessment across 137 countries, sand dust contributed to about 15% of the PM2.5 exposure but to about 45% of the PM2.5-related stillbirths during 2003-2019. In 2015, 30% of the PM2.5-related stillbirths were concentrated within 15% of pregnancies exposed to the dust-richest PM2.5. The index increased in subregions, such as South Asia, suggesting the growth of health inequality due to exposure to dust PM2.5. Based on our findings, land management, such as halting desertification, will help prevent stillbirths and reduce global maternal health inequality.

12.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38685194

RESUMEN

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Asunto(s)
Microplásticos , Plásticos , Polietileno/química , Monitoreo del Ambiente , Biomarcadores Ambientales
13.
Environ Sci Technol ; 58(31): 13866-13878, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39037862

RESUMEN

Perfluorooctanesulfonate (PFOS), a toxic anionic perfluorinated surfactant, exhibits variable electrostatic adsorption mechanisms on charge-regulated minerals depending on solution hydrochemistry. This work explores the interplay of multicomponent interactions and surface charge effects on PFOS adsorption to goethite surfaces under flow-through conditions. We conducted a series of column experiments in saturated goethite-coated porous media subjected to dynamic hydrochemical conditions triggered by step changes in the electrolyte concentration of the injected solutions. Measurements of pH and PFOS breakthrough curves at the outlet allowed tracking the propagation of multicomponent reactive fronts. We performed process-based reactive transport simulations incorporating a mechanistic network of surface complexation reactions to quantitatively interpret the geochemical processes. The experimental and modeling outcomes reveal that the coupled spatio-temporal evolution of pH and electrolyte fronts, driven by the electrostatic properties of the mineral, exerts a key control on PFOS mobility by determining its adsorption and speciation reactions on goethite surfaces. These results illuminate the important influence of multicomponent transport processes and surface charge effects on PFOS mobility, emphasizing the need for mechanistic adsorption models in reactive transport simulations of ionizable PFAS compounds to determine their environmental fate and to perform accurate risk assessment.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Compuestos de Hierro , Minerales , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Propiedades de Superficie , Porosidad , Compuestos de Hierro/química , Minerales/química , Concentración de Iones de Hidrógeno , Calibración , Adsorción
14.
Environ Res ; 251(Pt 2): 118670, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493849

RESUMEN

The surfactant-enhanced bioremediation (SEBR) of organic-contaminated soil is a promising soil remediation technology, in which surfactants not only mobilize pollutants, but also alter the mobility of bacteria. However, the bacterial response and underlying mechanisms remain unclear. In this study, the effects and mechanisms of action of a selected nonionic surfactant (Tween 80) on Pseudomonas aeruginosa transport in soil and quartz sand were investigated. The results showed that bacterial migration in both quartz sand and soil was significantly enhanced with increasing Tween 80 concentration, and the greatest migration occurred at a critical micelle concentration (CMC) of 4 for quartz sand and 30 for soil, with increases of 185.2% and 27.3%, respectively. The experimental results and theoretical analysis indicated that Tween 80-facilitated bacterial migration could be mainly attributed to competition for soil/sand surface sorption sites between Tween 80 and bacteria. The prior sorption of Tween 80 onto sand/soil could diminish the available sorption sites for P. aeruginosa, resulting in significant decreases in deposition parameters (70.8% and 33.3% decrease in KD in sand and soil systems, respectively), thereby increasing bacterial transport. In the bacterial post-sorption scenario, the subsequent injection of Tween 80 washed out 69.8% of the bacteria retained in the quartz sand owing to the competition of Tween 80 with pre-sorbed bacteria, as compared with almost no bacteria being eluted by NaCl solution. Several machine learning models have been employed to predict Tween 80-faciliated bacterial transport. The results showed that back-propagation neural network (BPNN)-based machine learning could predict the transport of P. aeruginosa through quartz sand with Tween 80 in-sample (2 CMC) and out-of-sample (10 CMC) with errors of 0.79% and 3.77%, respectively. This study sheds light on the full understanding of SEBR from the viewpoint of degrader facilitation.


Asunto(s)
Biodegradación Ambiental , Aprendizaje Automático , Polisorbatos , Pseudomonas aeruginosa , Tensoactivos , Polisorbatos/química , Tensoactivos/química , Pseudomonas aeruginosa/efectos de los fármacos , Microbiología del Suelo , Porosidad , Contaminantes del Suelo/química
15.
Environ Res ; 259: 119529, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960359

RESUMEN

In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.


Asunto(s)
Cobre , Filtración , Plomo , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cobre/química , Cobre/aislamiento & purificación , Plomo/química , Plomo/aislamiento & purificación , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Filtración/métodos , Purificación del Agua/métodos , Arena/química , Granada (Fruta)/química , Semillas/química
16.
Environ Res ; 251(Pt 1): 118590, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437900

RESUMEN

Estuaries are fragile environment that are most affected by climate change. One of the major consequences of climate change on estuarine processes is the enhancement in salt intrusion leading to higher salinity values. This has several implications on the estuarine sediment dynamics. Of the various factors that affect the flocculation of cohesive sediments, salinity and turbulence have been recognized as to have great significance. Many of the estuaries are contaminated with heavy metals, of which, the concentration of Iron (Fe (II)) are generally on the higher range. However, the influence of Fe (II) on the flocculation of cohesive sediments at various estuarine mixing conditions is not well known. The present study investigated the influence of Fe (II) on the flocculation of kaolin at various concentration of Fe (II), salinity and turbulence shear. The results indicated that Fe (II) and salinity have a positive influence on kaolin flocculation. The increase in turbulence shear caused an initial increase and then a decrease in floc size. In case of sand-clay mixtures, that are observed in mixed sediment estuarine environments, a reduction in the floc size was observed, which is attributed to the breakage of flocs induced by the shear of sand. Breakage coefficient, which is a measure of break-up of flocs, is generally adopted as 0.5 assuming binary breakage. The present study revealed that the breakage coefficient can take values from 0 to 1 and is a direct function of Fe (II) and salinity and an inverse function of turbulence and sand concentration. Thus, a new model for breakage coefficient with the influencing parameters has been proposed, which is an improvement of existing model that is expressed in terms of turbulence alone. Sensitivity analysis showed that the proposed model can very well predict the breakage coefficient of Fe (II) - kaolin flocs. Thus, the model can quantify the breakage coefficient of flocs in estuaries contaminated with Fe (II) that is a vital parameter for population balance models.


Asunto(s)
Arcilla , Estuarios , Floculación , Sedimentos Geológicos , Caolín , Caolín/química , Arcilla/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Arena/química , Silicatos de Aluminio/química , Salinidad , Hierro/química , Compuestos Ferrosos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
17.
Environ Res ; 260: 119588, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019136

RESUMEN

The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-h at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27 cm) and shoot (17.64 ± 0.35 cm) growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.


Asunto(s)
Glutatión , Nanocompuestos , Ácidos Ftálicos , Contaminantes Químicos del Agua , Ácidos Ftálicos/química , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Glutatión/química , Carbón Orgánico/química , Arena/química , Purificación del Agua/métodos
18.
Network ; : 1-24, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014986

RESUMEN

Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.

19.
Zoolog Sci ; 41(3): 245-250, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809862

RESUMEN

Western sand lance, Ammodytes japonicus, is known to have an estivation period, in which they cease feeding and stay in the sand from early summer to late autumn, followed by gonadal maturation. During the feeding period prior to estivation, they swim in daytime and spend the night in the sand. Before they start swimming, they show a typical behavior of head-exposing from the sand, which is likely to be related to foraging and predation avoidance. Our previous study revealed that melatonin regulates such diel behavior of this species. To elucidate the mechanisms of behavioral regulation throughout the life cycle of this sand lance, the present study examined the changes in behavior and melatonin secretion toward the estivation period. Both head-exposing and swimming behaviors were frequently observed at the transition period toward estivation. On the other hand, occurrence of these behaviors was suppressed just before entering estivation. Subsequently, it was found that plasma melatonin concentration was about three times higher at night than in daytime in the non-estivation period, while it was retained at high levels throughout the day in the estivation period. These results indicate that diurnal swimming behavior of sand lance from the feeding to estivation periods is associated with the daily cycle of melatonin secretion.


Asunto(s)
Conducta Animal , Melatonina , Natación , Animales , Melatonina/metabolismo , Melatonina/sangre , Conducta Animal/fisiología , Natación/fisiología , Estivación/fisiología , Ritmo Circadiano/fisiología , Peces/fisiología
20.
Antonie Van Leeuwenhoek ; 117(1): 28, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280034

RESUMEN

A novel Gram-stain-negative, strictly aerobic and bioflocculant-producing bacterium, designated as ASW11-36T, was isolated from an intertidal sand collected from coastal areas of Qingdao, PR China. Growth occurred at 15-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.5) and with 1.5-7.0% (w/v) NaCl (optimum, 2.5-3.0%). In the whole-cell fatty acid pattern prevailed C16:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major isoprenoid quinone was determined to be Q-8 and the major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), one unidentified aminolipid (AL), one unidentified glycolipid (GL), and two lipids (L1, L2). Based on the phylogenetic analyses of 16S rRNA gene sequences and 618 single-copy orthologous clusters, strain ASW11-36T could represent a novel member of the genus Alteromonas and was closely related to Alteromonas flava P0211T (98.4%) and Alteromonas facilis P0213T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridization values of the ASW11-36T genome assembly against the closely related species genomes were 71.8% and 21.7%, respectively, that clearly lower than the proposed thresholds for species. Based on phenotypic, phylogenetic, and chemotaxonomic analyses, strain ASW11-36T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas arenosi sp. nov. is proposed. The type strain is ASW11-36T (= KCTC 82496T = MCCC 1K05585T). In addition, the strain yielded 65% of flocculating efficiency in kaolin suspension with CaCl2 addition. The draft genome of ASW11-36T shared abundant putative CAZy family related genes, especially involved in the biosynthesis of exopolysaccharides, implying its potential environmental and biological applications.


Asunto(s)
Alteromonas , Arena , Filogenia , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos , Ubiquinona , ADN , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Fosfolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA