Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079551

RESUMEN

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Asunto(s)
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiología , Anaerobiosis , Dióxido de Silicio , Hibridación Fluorescente in Situ , Fósiles , Archaea/genética , Oxidación-Reducción , Sulfatos , Silicatos , Filogenia , Consorcios Microbianos
2.
Fish Shellfish Immunol ; 153: 109811, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117126

RESUMEN

Scavenger receptors (SRs) are integral to the innate immune system and function as pattern-recognition receptors that facilitate pathogen clearance and mediate anti-inflammatory responses. However, the role of SRs in the immune response of Lateolabrax maculatus against Aeromonas veronii is unclear. Here, we cloned scavenger receptor B1 from L. maculatus (LmSRB1) and performed bioinformatics analysis to study its potential functions. The open reading frame spans 1530 base pairs and encodes a 509-amino acid protein with a molecular mass of 57.44 kDa. Comparative analysis revealed high sequence conservation among fish species. Expression profiling revealed strong LmSRB1 transcription in various tissues, especially in head kidney and spleen. Following A. veronii exposure, LmSRB1 expression initially increased, peaking after 4-8 h, with a notable secondary peak at 72 h. Fluorescence in situ hybridization indicated that LmSRB1 mainly localized to the cytoplasm, and subcellular-localization studies confirmed LmSRB1 protein expression in the cytoplasm and cell membrane. Enzyme-linked immunosorbent assay data showed dose-dependent binding of LmSRB1 to A. veronii. Modulating LmSRB1 expression significantly altered the levels of IL-8, IL-1ß, TRAF6, and NIK. These results highlight the crucial role of LmSRB1 in L. maculatus's innate immune response to A. veronii and offer insights into improving the management of bacterial infections in aquaculture.


Asunto(s)
Lubina , Enfermedades de los Peces , Proteínas de Peces , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas veronii/fisiología , Secuencia de Aminoácidos , Lubina/inmunología , Lubina/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata/genética , Filogenia , Alineación de Secuencia/veterinaria
3.
Environ Sci Technol ; 58(1): 522-533, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38052449

RESUMEN

Microbially induced corrosion (MIC) on concrete represents a serious issue impairing the lifespan of coastal/marine infrastructure. However, currently developed concrete corrosion protection strategies have limitations in wide applications. Here, a biomineralization method was proposed to form a biomineralized film on concrete surfaces for corrosion inhibition. Laboratory seawater corrosion experiments were conducted under different conditions [e.g., chemical corrosion (CC), MIC, and biomineralization for corrosion inhibition]. A combination of chemical and mechanical property measurements of concrete (e.g., sulfate concentrations, permeability, mass, and strength) and a genotypic-based investigation of formed concrete biofilms was conducted to evaluate the effectiveness of the biomineralization approach on corrosion inhibition. The results show that MIC resulted in much higher corrosion rates than CC. However, the biomineralization treatment effectively inhibited corrosion because the biomineralized film decreased the total and relative abundance of sulfate-reducing bacteria (SRB) and acted as a protective layer to control the diffusion of sulfate and isolate the concrete from the corrosive SRB communities, which helps extend the lifespan of concrete structures. Moreover, this technique had no negative impact on the native marine microbial communities. Our study contributes to the potential application of biomineralization for corrosion inhibition to achieve long-term sustainability for major marine concrete structures.


Asunto(s)
Bacterias , Biomineralización , Corrosión , Biopelículas , Sulfatos
4.
Mol Cell ; 64(3): 455-466, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773677

RESUMEN

Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Complejo Mediador/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/genética , Sitios de Unión , Complejo Mediador/metabolismo , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/metabolismo , Iniciación de la Transcripción Genética , Activación Transcripcional
5.
Biofouling ; 40(5-6): 333-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836545

RESUMEN

The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm-2 and 1.26 mg cm-2, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm-2 and 0.03 mg cm-2, respectively. In comparison to Mo (2.2 × 106 cells cm-2) or Cr (1.4 × 106 cells cm-2) surface, the sessile cell counts on Fe (4.0 × 107 cells cm-2) or Ni (3.1 × 107 cells cm-2) surface was higher.


Asunto(s)
Adhesión Bacteriana , Sulfatos , Corrosión , Sulfatos/química , Metales/química , Agua de Mar/microbiología , Agua de Mar/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Incrustaciones Biológicas/prevención & control
6.
Biofouling ; 40(9): 617-631, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39291398

RESUMEN

The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.


Asunto(s)
Desulfovibrio desulfuricans , Flavina-Adenina Dinucleótido , Corrosión , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Desulfovibrio desulfuricans/metabolismo , Oxidación-Reducción , Biopelículas
7.
Biochem Genet ; 62(5): 3557-3567, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38133857

RESUMEN

Scavenger receptor type B (SR-BI) is a receptor that binds both native and altered lipoproteins. It was revealed to facilitate utilization of high-density lipoprotein HDL and significantly affect the reverse transport of cholesterol. Therefore, the objectives were to identify the possible role of the genetic variant rs4238001 in patients with myocardial infarction (MI) on serum lipid level, and how this variant could impact the response of rosuvastatin drug. The genotyping of the rs4238001 genetic polymorphism of the SR-B1 gene was performed in 300 participants, including 150 MI patients treated with 20mg/day/4 weeks of rosuvastatin and 150 healthy control using Taq man probes (FAM and VIC) by Real-time PCR technique. The concentrations of the lipid profile were evaluated. The significance of the anthropometric data was revealed in the ejection fraction and smoking status (p < 0.05) between groups. The lipid profile shows either significant differences between control and MI patients (pre-treatment) or between pre-and post-treatment of MI patients (p < 0.05), but not HDL-c (p > 0.05). The minor allele frequency MAF% of the T allele and TT genotype were more frequent in MI patients than in controls (P = 0.173; OR = 3.62; 95% CI = 0.74-17.64). CC genotype was found to be associated with response to rosuvastatin therapy with a change of % (29.08 ± 53.2; p = 0.021). In the Iraqi population, the rs4238001 polymorphism of the SR-B1 gene is associated with variations in serum lipids, and the CC genotype of the SNP is related to higher HDL-C in the lipid-lowering rosuvastatin response.


Asunto(s)
Lípidos , Infarto del Miocardio , Polimorfismo de Nucleótido Simple , Rosuvastatina Cálcica , Humanos , Rosuvastatina Cálcica/uso terapéutico , Masculino , Persona de Mediana Edad , Femenino , Infarto del Miocardio/genética , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/sangre , Lípidos/sangre , Irak , Adulto , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Anciano , Receptores Depuradores de Clase B/genética , Antígenos CD36/genética , Genotipo , Estudios de Casos y Controles
8.
Chem Biodivers ; 21(6): e202301874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488665

RESUMEN

Lichens are a symbiotic association of algae and fungus, belonging to the family Parmeliaceae. Some lichen species are edible and used as an active ingredient for preparation of exotic spices as well as folklore medicine to cure different kinds of ailments. A specimen of lichen was collected from Munner in the Kerala State of South India for chemical profiling. Chemical analyses of the diethyl ether extract of the defatted lichen led to the isolation of six phenols 1-6 with variation of relative abundance. Amongst them, the relative abundance of compound 3 was the greatest (1 % of crude extract) and it was identified as atranorin. The structures of known compounds were confirmed by comparison of their 1H-NMR, 13C NMR, and mass data with published values available in the literature. In vitro bioassay for anti-proliferative activity of these compounds has been conducted against various human cancer cell lines in comparison with paclitaxel as control using SRB assay. Interestingly, a new compound 5 was found along with previously reported compounds from this lichen. This new compound was designated as fluoroatranorin 5 which was reported for the first time herein. The structural characterization of a new depside was determined by spectral methods such as 1H-NMR, 13C NMR, 19F NMR, IR, LC-HRESI-MS, and LC-MS/MS study. Its structure was confirmed by single crystal X-ray diffraction study. This new compound was designated as fluoroatranorin 5 which was reported first time herein. Anti-proliferative activity of all these compounds was evaluated against six different cancer cell lines. The inhibitory activity, IC50 value of compounds 1-3 and 5 exhibited at 99.64, 102.04, 109.20, 53.0 and 2.4 µM on cancer cell lines HT-29 (colon), Hela (cervical), HT-29, HPAC (pancreas) and A2780 (ovarian cancer cell line) respectively in comparison with paclitaxel as control. The new compound 5 exhibited significant activity with IC50 value 2.4 µM on A2780 ovarian cancer cell line.


Asunto(s)
Antineoplásicos , Proliferación Celular , Depsidos , Ensayos de Selección de Medicamentos Antitumorales , Líquenes , Humanos , Líquenes/química , Proliferación Celular/efectos de los fármacos , Depsidos/farmacología , Depsidos/química , Depsidos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Halogenación , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
9.
J Environ Manage ; 351: 119784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38081091

RESUMEN

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Asunto(s)
Desulfovibrio , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/química , Instalaciones de Eliminación de Residuos , Sulfatos/química
10.
Molecules ; 29(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39339492

RESUMEN

Bioremediation of acid mine drainage (AMD) was often challenged by poor tolerance of sulfate-reducing bacteria (SRB) to heavy metals and low bioactivity. The highly active immobilized particles with Fe0/Fe2+ enhanced SRB (Fe0/2+-SRB) were prepared by the microorganism immobilization technique. Three dynamic columns were constructed to investigate the adsorption capacity of Fe0/2+-SRB for Mn2+ under varying adsorption layer heights, inflow velocity, and initial Mn2+ concentrations. The role of each matrix material in the immobilized particles was explored, the mechanism of AMD remediation by Fe0/2+-SRB was revealed, and the adaptability of Fe0/2+-SRB to AMD under various initial conditions was investigated. The results showed that the prepared Fe0/2+-SRB exhibited a well-developed surface pore structure. When the adsorption layer height was 200 mm, the influent flow rate was 5 × 10-5 m3/s, and the initial manganese ion concentration was 10 mg/L, the maximum dynamic adsorption capacities (qe) of Mn2+ for each dynamic column were 7.8430, 4.7627, and 8.7677 mg/g, respectively. Compared to dynamic columns 1# and 2#, dynamic column 3# showed the best performance in treating AMD, and the Thomas model effectively described the adsorption kinetics of Mn2+ by Fe0/2+-SRB(3#). Microstructural analysis indicated that chemical adsorption, ion exchange, dissimilation-reduction reaction, and surface complexation occurred between the various matrix materials in Fe0/2+-SRB(3#). Mn2+ was primarily removed in the form of metal sulfide (MnS), and Fe0/Fe2+ could promote the dissimilatory reduction of SO42- by SRB to form S2-. Fe0/2+-SRB(3#) was able to adapt to AMD with initial conditions of pH was 2~4, SO42- < 2500 mg/L, and Mn2+ < 20 mg/L. The research results provide new insights into the remediation of AMD, using a combined microbial-adsorption technology.

11.
World J Microbiol Biotechnol ; 40(3): 98, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353843

RESUMEN

Microbiologically-influenced corrosion (MIC) is a common operational hazard to many industrial processes. The focus of this review lies on microbial corrosion in the maritime industry. Microbial metal attachment and colonization are the critical steps in MIC initiation. We have outlined the crucial factors influencing corrosion caused by microorganism sulfate-reducing bacteria (SRB), where its adherence on the metal surface leads to Direct Electron Transfer (DET)-MIC. This review thus aims to summarize the recent progress and the lacunae in mitigation of MIC. We further highlight the susceptibility of stainless steel grades to SRB pitting corrosion and have included recent developments in understanding the quorum sensing mechanisms in SRB, which governs the proliferation process of the microbial community. There is a paucity of literature on the utilization of anti-quorum sensing molecules against SRB, indicating that the area of study is in its nascent stage of development. Furthermore, microbial adherence to metal is significantly impacted by surface chemistry and topography. Thus, we have reviewed the application of super wettable surfaces such as superhydrophobic, superhydrophilic, and slippery liquid-infused porous surfaces as "anti-corrosion coatings" in preventing adhesion of SRB, providing a potential avenue for the development of practical and feasible solutions in the prevention of MIC. The emerging field of super wettable surfaces holds significant potential for advancing efficient and practical MIC prevention techniques.


Asunto(s)
Desulfovibrio , Microbiota , Corrosión , Transporte de Electrón , Porosidad
12.
Microb Pathog ; 185: 106394, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858632

RESUMEN

Zebrafish (Danio rerio) is an excellent model to study bacterial infections in fish and their treatment. We used zebrafish as a model of infection for Aeromonas salmonicida subsp. salmonicida (hereinafter A. salmonicida), the causative agent of fish furunculosis. The infection process of A. salmonicida was studied by immersion of zebrafish larvae in 2 different doses of the bacteria and the fish mortality was monitored for three days. The bacterium caused a high mortality (65 %) in zebrafish larvae only when they were exposed to a high bacterial concentration (107 bacterial cells/mL). To evaluate the use of fluorescence microscopy to follow A. salmonicida infection in vivo, two different fluorescent strains generated by labeling an A. salmonicida strain with either, the green fluorescent protein (GFP), or with a previously reported siderophore amonabactin-sulforhodamine B conjugate (AMB-SRB), were used. The distribution of both labeled bacterial strains in the larvae tissues was evaluated by conventional and confocal fluorescence microscopy. The fluorescent signal showed a greater intensity with the GFP-labeled bacteria, so it could be observed using conventional fluorescence microscopy. Since the AMB-SRB labeled bacteria showed a weaker signal, the larvae were imaged using a laser scanning confocal microscope after 48 h of exposure to the bacteria. Both fluorescent signals were mainly observed in the larvae digestive tract, suggesting that this is the main colonization route of zebrafish for waterborne A. salmonicida. This is the first report of the use of a siderophore-fluorophore conjugate to study a bacterial infection in fish. The use of a siderophore-fluorophore conjugate has the advantage that it is a specific marker and that does not require genetic manipulation of the bacteria.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Animales , Sideróforos/metabolismo , Pez Cebra , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Aeromonas salmonicida/genética , Enfermedades de los Peces/microbiología
13.
Arch Microbiol ; 205(5): 162, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010699

RESUMEN

Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.


Asunto(s)
Desulfovibrio , Yacimiento de Petróleo y Gas , Oxidación-Reducción , Sulfatos/metabolismo , Desulfovibrio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Azufre/metabolismo
14.
Biometals ; 36(2): 339-350, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35767096

RESUMEN

Historically, sulfate-reducing bacteria (SRB) have been considered to be strict anaerobes, but reports in the past couple of decades indicate that SRB tolerate exposure to O2 and can even grow in aerophilic environments. With the transition from anaerobic to microaerophilic conditions, the uptake of Fe(III) from the environment by SRB would become important. In evaluating the metabolic capability for the uptake of iron, the genomes of 26 SRB, representing eight families, were examined. All SRB reviewed carry genes (feoA and feoB) for the ferrous uptake system to transport Fe(II) across the plasma membrane into the cytoplasm. In addition, all of the SRB genomes examined have putative genes for a canonical ABC transporter that may transport ferric siderophore or ferric chelated species from the environment. Gram-negative SRB have additional machinery to import ferric siderophores and ferric chelated species since they have the TonB system that can work alongside any of the outer membrane porins annotated in the genome. Included in this review is the discussion that SRB may use the putative siderophore uptake system to import metals other than iron.


Asunto(s)
Compuestos Férricos , Sideróforos , Humanos , Sideróforos/genética , Genómica , Hierro , Hierro de la Dieta , Bacterias/genética , Sulfatos
15.
Bioorg Chem ; 141: 106901, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37797455

RESUMEN

Pyrazole, as a small molecule, was discovered for higher cytotoxicity and affinity towards Aurora-A kinase. Based on these facts, a novel pyrazole substituted at the 4th position was designed, synthesized, and evaluated against MCF-7, MDA-MB-23, and Vero (non-cancerous kidney cell) cell lines. Compounds5hand5eexhibited greater cytotoxicity in the series against MCF-7 and MDA-MB-231, with GI50 values of 0.12 µM and 0.63 µM, respectively, as compared to Imatinib (GI50 values of 16.08 µM and 10.36 µM). All of the compounds displayed selective cytotoxicity against cancer cells but not on normal Vero cells, supporting the design strategy to be a selective anticancer agent. Furthermore, compounds 5h and 5e inhibited Aurora-A kinase with IC50 values of 0.78 µM (4.70-fold) and 1.12 µM (2.84-fold), respectively, as compared to alisertib (IC50 = 3.36 µM). In addition, compound 5h significantly arrested the cell cycle at G2/M (34.89 %, 5.56-fold) and the apoptotic phase (25.04 %, 11.81-fold) compared to the control. It also triggered an increase in early (7.43 %) and late (14.89 %) phase apoptosis compared to vehicle (0.235 and 0.36 %, respectively), causing 37.89-fold higher total apoptosis in the annexin-V assay. These data imply that Aurora-A kinase inhibition may be linked to apoptosis induction and cell cycle arrest. Furthermore, their higher docking score in the study confirmed evidence of Aurora-kinase suppression. It was observed that fluorine and imidazole increased the H-bond and lipophilic interactions with the binding residue. Also, the substitution of electron-rich and lipophilic groups increased hydrophobic interactions. Moreover, the three-atom linkage (CH2NHCH2) expanded compound 5h to fill the cavity. Based on current findings, it is concluded that compounds 5h and 5e with strong Aurora-A kinase suppression may be promising anticancer agents.


Asunto(s)
Antineoplásicos , Aurora Quinasa A , Pirazoles , Animales , Antineoplásicos/química , Apoptosis , Aurora Quinasa A/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas , Pirazoles/farmacología , Relación Estructura-Actividad , Células Vero
16.
Environ Res ; 217: 114939, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435490

RESUMEN

To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Fermentación , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno
17.
Anaerobe ; 83: 102780, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37619766

RESUMEN

OBJECTIVE: Characterization and documentation of strain MCM B-1480T, a novel sulfate-reducing bacterium isolated from produced water of India's western offshore hydrocarbon reservoir. METHOD: Strain MCM B-1480T was unequivocally identified using a polyphasic approach routinely followed in bacterial systematics. The morphological and biochemical characterization of strain MCM B-1480T was carried out using standard microbiological techniques. RESULTS: MCM B-1480T was a Gram-stain-negative, motile, non-spore-forming, curved-rod-shaped bacterium. MCM B-1480T could grow at temperatures between 20 and 60 °C (optimum 37 °C), pH 6-8 (optimum 7), and required 1-6% NaCl (optimum 3%) for growth. Strain MCM B-1480T was reducing sulfate to produce hydrogen sulfide during growth. This strain used lactate and pyruvate as prominent electron donors, whereas sulfate, sulfite, thiosulfate, and nitrate served as electron acceptors. MCM B-1480T shared maximum 16S rRNA gene sequence homology of 98.65% with the members of the genus Pseudodesulfovibrio. The G + C content of the 3.87 Mb MCM B-1480T genome was 60.39%. Digital DDH (27.7%) and average nucleotide identity (ANI 84%) with the closest phylogenetic affiliate (less than 70% and 95%, respectively) reaffirmed its distinctiveness. The major cellular fatty acids components, namely iso-C15:0, anteiso-C15:0, C16:0, and anteiso-C17:0, differentiated strain MCM B-1480T from other species of Pseudodesulfovibrio. Genome annotation revealed the presence of genes encoding dissimilatory sulfate reduction and nitrate reduction in strain MCM B-1480T. CONCLUSION: The polyphasic studies, including SSU rRNA gene sequencing, average nucleotide identity, Digital DNA-DNA hybridization, cell wall fatty acids analysis, etc., identified strain MCM B-1480T as a novel taxon and Pseudodesulfovibrio thermohalotolerans sp. nov. was proposed (= JCM 39269T = MCC 4711T).


Asunto(s)
Nitratos , Sulfatos , ARN Ribosómico 16S/genética , Filogenia , Anaerobiosis , Bacterias/genética , Ácidos Grasos , Hidrocarburos , Nucleótidos , ADN , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
18.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674544

RESUMEN

Adipose tissue hypertrophy during obesity plays pleiotropic effects on health. Adipose tissue expandability depends on adipocyte size and number. In mature adipocytes, lipid accumulation as triglycerides into droplets is imbalanced by lipid uptake and lipolysis. In previous studies, we showed that adipogenesis induced by oleic acid is signed by size increase and reduction of FAT/CD36 (SR-B2) activity. The present study aims to decipher the mechanisms involved in fat mass regulation by fatty acid/FAT-CD36 signalling. Human adipose stem cells, 3T3-L1, and its 3T3-MBX subclone cell lines were used in 2D cell cultures or co-cultures to monitor in real-time experiments proliferation, differentiation, lipolysis, and/or lipid uptake and activation of FAT/CD36 signalling pathways regulated by oleic acid, during adipogenesis and/or regulation of adipocyte size. Both FABP4 uptake and its induction by fatty acid-mediated FAT/CD36-PPARG gene transcription induce accumulation of intracellular FABP4, which in turn reduces FAT/CD36, and consequently exerts a negative feedback loop on FAT/CD36 signalling in both adipocytes and their progenitors. Both adipocyte size and recruitment of new adipocytes are under the control of FABP4 stores. This study suggests that FABP4 controls fat mass homeostasis.


Asunto(s)
Adipocitos , Ácido Oléico , Humanos , Ratones , Animales , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Lipólisis , Adipogénesis , Diferenciación Celular , Ácidos Grasos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células 3T3-L1 , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
19.
J Environ Manage ; 346: 118967, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714089

RESUMEN

Boosting acetate production from waste activated sludge (WAS) fermentation is often hindered by the inefficient solubilization in the hydrolysis step and the high hydrogen pressure ( [Formula: see text] ) during the acidogenesis of C3-C5 short-chain fatty acid (SCFAs), i.e., propionate (HPr), butyrate (HBu) and valerate (HVa). Therefore, this study employed persulfate (PS) oxidation and C3-C5 incomplete-oxidative sulfate reducing bacteria (io-SRB) metabolizers to tailor SCFAs conversion from WAS fermentation. The decomposition efficiency, performance of SCFAs production was investigated. Results showed that the PS significantly promoted WAS decomposition, with a dissolution rate of 39.4%, which is 26.0% higher than the un-treated test. Furthermore, SCFAs yields were increased to 462.7 ± 42 mg COD/g VSS in PS-HBu-SRB, which was 7.4 and 2.2 times higher than that of un-treated and sole PS tests, respectively. In particular, the sum of acetate and HPr reached the peak value of 85%, indicating that HBu-SRB mediation promoted the biotransformation of HBu and macromolecular organics by reducing the [Formula: see text] restriction. Meanwhile, sulfate radical (SO4∙-)-based oxidation (SR-AOPs) was effective in the decomposition of WAS, the oxidative product, i.e., sulfate served the necessary electron acceptor for the metabolism of io-SRB. Further analysis of Mantel test revealed the cluster of the functional genus and their interaction with environmental variables. Additionally, molecular ecological network analysis explored the potential synergistic and competitive relationships between critical genera. Additionally, the potential synergistic and competitive relationships between critical genera was explored by molecular ecological network analysis. This study provides new insights into the integration of SR-AOPs with microbial mediation in accelerating SCFAs production from WAS fermentation.


Asunto(s)
Ácidos Grasos Volátiles , Aguas del Alcantarillado , Fermentación , Acetatos , Sulfatos , Concentración de Iones de Hidrógeno , Anaerobiosis
20.
Molecules ; 28(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687026

RESUMEN

A wastewater treatment system has been established based on sulfate-reducing and sulfide-oxidizing processes for treating organic wastewater containing high sulfate/sulfide. The influence of COD/SO42- ratio and hydraulic retention time (HRT) on removal efficiencies of sulfate, COD, sulfide and electricity generation was investigated. The continuous operation of the treatment system was carried out for 63 days with the optimum COD/SO42- ratio and HRT. The result showed that the COD and sulfate removal efficiencies were stable, reaching 94.8 ± 0.6 and 93.0 ± 1.3% during the operation. A power density level of 18.0 ± 1.6 mW/m2 was obtained with a sulfide removal efficiency of 93.0 ± 1.2%. However, the sulfide removal efficiency and power density decreased gradually after 45 days. The results from scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) show that sulfur accumulated on the anode, which could explain the decline in sulfide oxidation and electricity generation. This study provides a promising treatment system to scale up for its actual applications in this type of wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA