Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 276, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103836

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are critical factors that limit the effectiveness of gastric cancer (GC) therapy. Circular RNAs (circRNAs) are confirmed as important regulators of many cancers. However, their role in regulating CSC-like properties of GC remains largely unknown. Our study aimed to investigate the role of circUBA2 in CSC maintenance and the underlying mechanisms. METHODS: We identified circUBA2 as an upregulated gene using circRNA microarray analysis. qRT-PCR was used to examine the circUBA2 levels in normal and GC tissues. In vitro and in vivo functional assays were performed to validate the role of circUBA2 in proliferation, migration, metastasis and CSC-like properties of GC cell. The relationship between circUBA2, miR-144-5p and STC1 was characterised using bioinformatics analysis, a dual fluorescence reporter system, FISH, and RIP assays. RESULTS: CircUBA2 expression was significantly increased in GC tissues, and patients with GC with high circUBA2 expression had a poor prognosis. CircUBA2 enhances CSC-like properties of GC, thereby promoting cell proliferation, migration, and metastasis. Mechanistically, circUBA2 promoted GC malignancy and CSC-like properties by acting as a sponge for miR-144-5p to upregulate STC1 expression and further activate the IL-6/JAK2/STAT3 signaling pathway. More importantly, the ability of circUBA2 to enhance CSC-like properties was inhibited by tocilizumab, a humanised Interleukin-6 receptor (IL-6R) antibody. Thus, circUBA2 knockdown and tocilizumab synergistically inhibited CSC-like properties. CONCLUSIONS: Our study demonstrated the critical role of circUBA2 in regulating CSC-like properties in GC. CircUBA2 may be a promising prognostic biomarker for GC.

2.
Pharmacol Res ; 204: 107218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768671

RESUMEN

This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, ßPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to ßPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.


Asunto(s)
Quimiocina CCL2 , Glicoproteínas , Macrófagos , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Proteínas Señalizadoras YAP , Animales , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Humanos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Macrófagos/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Ratones , Melanoma/patología , Melanoma/metabolismo , Melanoma/inmunología , Melanoma/genética , Retroalimentación Fisiológica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Microambiente Tumoral , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Progresión de la Enfermedad , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Immunopharmacol Immunotoxicol ; 46(2): 229-239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38194243

RESUMEN

BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.


Asunto(s)
Glicoproteínas , MicroARNs , Psoriasis , Sapogeninas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Queratinocitos/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Proliferación Celular/genética
4.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201771

RESUMEN

High-altitude diseases, including acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), are closely related to an individual's ability to adapt to hypoxic environments. However, specific research in this field is relatively limited, and further biomarker research and clinical trials are needed to clarify the exact role and potential therapeutic applications of key genes in high-altitude diseases. This study focuses on the role of the STC1 gene in high-altitude diseases and explores its expression patterns in different types of cancer. By using gene expression data analysis and functional experiments, we identified STC1 as a key gene affecting the development of altitude sickness. In addition, we also conducted expression and mutation analysis on STC1 in various cancer samples and found significant differences in the expression of this gene in 13 types of malignant tumors, which is associated with the hypoxic state in the tumor microenvironment. In addition, STC1 is significantly associated with patient prognosis and influences tumor immunity by mediating six types of immune cells (CD8+T cells, CD4+T cells, neutrophils, macrophages, monocytes, and B cells) in the tumor microenvironment. The expression and diagnostic value of STC1 were confirmed through GEO datasets and qPCR testing, indicating consistency with the results of bioinformatics analysis. These results indicate that STC1 is not only an important factor in the adaptive response to high-altitude diseases but may also play a role in the adaptation of cancer to low-oxygen environments. Our research provides a new perspective and potential targets for the discovery of biomarkers for high-altitude diseases and cancer treatment.


Asunto(s)
Mal de Altura , Biomarcadores de Tumor , Glicoproteínas , Neoplasias , Humanos , Altitud , Mal de Altura/genética , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Microambiente Tumoral/genética
5.
J Sci Food Agric ; 104(1): 295-302, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37563097

RESUMEN

BACKGROUND: Wheat protein intake leads to improved appetite control. However, the active components causing appetite in wheat have not been fully clarified. Gut cholecystokinin (CCK) plays a vital role in appetite control. This study aimed to investigate the ability of wheat protein digest (WPD) to stimulate CCK secretion and clarify the active components and target of action. RESULTS: WPD was prepared by a simulated gastrointestinal digestion model. WPD treatment with a concentration of 5 mg mL-1 significantly stimulated CCK secretion in enteroendocrine STC-1 cells (P < 0.05). Furthermore, oral gavage with WPD in mice significantly increased plasma CCK level at 60 min (P < 0.01). Preparative C18 column separation was used to isolate peptide fractions associated with CCK secretion and peptide sequences were identified by liquid chromatography-tandem mass spectrometry. A new CCK-releasing peptide, RYIVPL, that potently stimulated CCK secretion was successfully identified. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist, NPS 2143, CCK secretion induced by WPD or RYIVPL was greatly suppressed, suggesting that CaSR was involved in WPD- or RYIVPL-induced CCK secretion. CONCLUSION: The present study demonstrated that WPD has an ability to stimulate CCK secretion in vitro and in vivo, and determined that peptide RYIVPL in WPD could stimulate CCK secretion through CaSR. © 2023 Society of Chemical Industry.


Asunto(s)
Colecistoquinina , Triticum , Ratones , Animales , Colecistoquinina/metabolismo , Triticum/metabolismo , Línea Celular , Péptidos/farmacología , Receptores Sensibles al Calcio/metabolismo , Digestión
6.
Cytokine ; 162: 156114, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603482

RESUMEN

Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by infection, trauma, shock, aspiration or drug reaction. The pathogenesis of ARDS is characterized as an unregulated inflammatory storm, which causes endothelial and epithelial layer damage, leading to alveolar fluid accumulation and pulmonary edema. Previous studies have shown the potential role of mesenchymal stem cells (MSC) in combating the inflammatory cascade by increasing the anti-inflammatory mediator interleukin-10 (IL-10). However, the involved mechanisms are unclear. Here we investigated whether a key immunomodulatory regulator, stanniocalcin-1 (STC-1), was secreted by MSC to activate phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)/ mammalian target of rapamycin (mTOR) signaling pathway to increase IL-10 expression in alveolar macrophages. Lipopolysaccharide (LPS)-stimulated alveolar macrophages co-cultured with human umbilical mesenchymal stem cells (HUMSC) secreted high levels of IL-10. HUMSC co-cultured with alveolar macrophages expressed high STC-1 levels and increased PI3K, AKT and mTOR phosphorylation after LPS activation in alveolar macrophages. STC-1 knockdown in HUMSC decreased the phosphorylation of PI3K, AKT and mTOR and suppressed IL-10 expression in alveolar macrophages. Rapamycin (an mTOR inhibitor) reduced IL-10 secretion in alveolar macrophages. These results, together with our previous study and others, indicate that the PI3K/AKT/mTOR pathway is involved in the regulation of IL-10 production by STC-1 secreted by HUMSC in alveolar macrophages.


Asunto(s)
Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , Factores Inmunológicos/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos Alveolares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
J Pathol ; 257(2): 227-238, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122667

RESUMEN

Stanniocalcin 1 (STC1), a secreted protein, is upregulated in human cancers including hepatocellular carcinoma (HCC). While most HCCs develop from chronic liver disease, which involves progressive parenchymal injury and fibrosis, the role of STC1 in this preneoplastic stage remains poorly understood. In this study we investigated the clinical relevance and functional significance of secreted STC1 in liver fibrosis. To this end, the STC1 level was determined in the serum samples of chronic hepatitis B patients and correlated with the degree of liver fibrosis. Diagnostic performance of STC1 was analysed by area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value, and negative predictive value. The results were compared with other well-characterised serum biomarkers for liver fibrosis: Aspartate transaminase to Platelet Ratio Index (APRI) and Fibrosis-4 (FIB-4). The functional role of STC1 was interrogated by in vitro experiments using cell line models. Expression of fibrogenic markers was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. Our results showed that the serum STC1 level in chronic hepatitis B patients was positively correlated with the degree of liver fibrosis and showed a stepwise increase in accordance with the severity of fibrosis. The AUROCs for detecting significant fibrosis (>9.0 kPa) and cirrhosis (>12.0 kPa) was 0.911 and 0.880, respectively. STC1 demonstrated a superior specificity and positive predictive value when compared to APRI and FIB-4. Consistent with this, STC1 was elevated in the liver tissues and sera of CCl4 -treated mice showing marked liver fibrosis. In vitro, STC1 was secreted by the human hepatic stellate cell line LX2. Human recombinant STC1 (rhSTC1) induced expression of fibrogenic markers in LX2 cells. The profibrogenic phenotype conferred by rhSTC1 or TGF-ß1 in LX2 cells could be attenuated using anti-STC1 antibody. Taken together, STC1 is a specific serum biomarker for HBV-associated liver fibrosis. STC1 functionally promotes liver fibrogenesis and is a potential actionable target. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Animales , Biomarcadores , Glicoproteínas , Virus de la Hepatitis B , Hepatitis B Crónica/complicaciones , Humanos , Cirrosis Hepática , Ratones
8.
Anim Biotechnol ; 34(9): 4687-4694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36905141

RESUMEN

The purpose of this study was to examine STC-1's structure, function, and differential expression in large and miniature pigs. We cloned the Hezuo pig's coding sequence, compared its homology, and used bioinformatics to assess the structure. RT-qPCR and Western blot were used to detect the expression in ten tissues of Hezuo pig and Landrace pig. The results showed that Hezuo pig was most closely related to Capra hircus and most distantly related to Danio rerio. The protein STC-1 has a signal peptide and its secondary structure is dominated by the alpha helix. The mRNA expression in the spleen, duodenum, jejunum, and stomach of Hezuo pigs was higher than that of Landrace pigs. And except for heart and duodenum, expression of the protein in Hezuo pig was higher than in another. In conclusion, STC-1 is highly conserved among different breeds of pigs, and the expression and distribution of its mRNA and protein are different in large and miniature pigs. This work can lay the foundation for future study into the mechanism of action of STC-1 in Hezuo pigs and the enhancement of breeding in miniature pigs.


Asunto(s)
Clonación de Organismos , Porcinos/genética , Animales , Porcinos Enanos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Clonación Molecular
9.
Biochem Biophys Res Commun ; 588: 118-124, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34953208

RESUMEN

Glucagon like peptide-1 (GLP-1) is one of incretin hormone and is secreted when enteroendocrine L cells sense saccharides, amino acids, and fatty acids. Some amino acids have been shown to promote GLP-1 secretion from small intestinal enteroendocrine L cells. However, the molecular mechanisms that L-phenylalanine, a potent trigger of GLP-1 secretion, causes GLP-1 secretion from enteroendocrine L cells has not been elucidated. In this study, we used live-cell imaging to clarify the pathway by which L-phenylalanine activates enteroendocrine L cells. The results showed that L-phenylalanine was sensed by Gq-coupled receptor GPR142 and caused an increase in intracellular Ca2+ concentration. In addition, L-phenylalanine was taken up directly into the cell via Na+-dependent amino acid transporter, causing membrane depolarization and enhancing GLP-1 secretion. In summary, enteroendocrine L cells may regulate blood glucose levels in the body by detecting L-phenylalanine in the lumen and secreting GLP-1 via GPR142 and Na+-dependent amino acid transporters.


Asunto(s)
Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Fenilalanina/farmacología , Animales , Calcio/metabolismo , Línea Celular , Células Enteroendocrinas/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Tracto Gastrointestinal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Fenilalanina/administración & dosificación , Receptores Sensibles al Calcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sodio/metabolismo , Gusto
10.
Mol Carcinog ; 61(9): 839-850, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35785493

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a poor response to the first-line chemotherapy drug gemcitabine. We previously identified stanniocalcin-1 as a gemcitabine-resistant-related gene, but its specific role and function in pancreatic cancer remain unclear. RT-qPCR and Western blot were used to evaluate differential protein and mRNA expressions. The biological functions of genes were determined using proliferation and drug-resistance experiments. Subcutaneous tumorigenesis experiment was performed on nude mice. Prognostic analysis was performed using public databases and our clinical data. We found HIF-1α-regulated STC1 expression mediated chemoresistance in pancreatic cancer. Deeper, we explored the action mechanism of STC1 and identified PI3K/AKT as the downstream signaling pathway of STC1. Furthermore, we analyzed clinical data and found that STC1 expression was related to the prognosis of gemcitabine-treated patients after surgery. In general, we proved the HIF-1α/STC1/PI3K-AKT axis participated in PDAC progression and chemoresistance, and STC1 may serve as a potential prognostic factor and therapeutic target for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/genética , Glicoproteínas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Gemcitabina , Neoplasias Pancreáticas
11.
Mar Drugs ; 20(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35200641

RESUMEN

Inducing the feeling of fullness via the regulation of satiety hormones presents an effective method for reducing excess energy intake and, in turn, preventing the development of obesity. In this study, the ability of blue whiting soluble protein hydrolysates (BWSPHs) and simulated gastrointestinal digested (SGID) BWSPHs, to modulate the secretion and/or production of satiety hormones, such as glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY), was assessed in murine enteroendocrine STC-1 cells. All BWSPHs (BW-SPH-A to BW-SPH-F) (1.0% w/v dw) increased active GLP-1 secretion and proglucagon production in STC-1 cells compared to the basal control (Krebs-Ringer buffer) (p < 0.05). The signaling pathway activated for GLP-1 secretion was also assessed. A significant increase in intracellular calcium levels was observed after incubation with all BWSPHs (p < 0.05) compared with the control, although none of the BWSPHs altered intracellular cyclic adenosine monophosphate (cAMP) concentrations. The secretagogue effect of the leading hydrolysate was diminished after SGID. Neither pre- nor post-SGID hydrolysates affected epithelial barrier integrity or stimulated interleukin (IL)-6 secretion in differentiated Caco-2/HT-29MTX co-cultured cells. These results suggest a role for BWSPH-derived peptides in satiety activity; however, these peptides may need to be protected by some means to avoid loss of activity during gastrointestinal transit.


Asunto(s)
Gadiformes/metabolismo , Péptido 1 Similar al Glucagón/efectos de los fármacos , Proglucagón/efectos de los fármacos , Hidrolisados de Proteína/farmacología , Animales , Células CACO-2 , Línea Celular , Técnicas de Cocultivo , Células Enteroendocrinas/efectos de los fármacos , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células HT29 , Humanos , Ratones , Proglucagón/metabolismo , Hidrolisados de Proteína/aislamiento & purificación
12.
Biochem Genet ; 60(6): 2533-2551, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35589876

RESUMEN

Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in calcium/phosphorus metabolism and direct inhibition of bone and muscle growth. The aim of this study was to investigate the STC-1 gene with respect to the regulatory mechanisms of porcine growth metabolic pathways involving autophagy. Western blotting was used to detect the expression of autophagy and mitochondrial function-related proteins, and flow cytometry was used to detect mitochondrial function-related. Changes in the autophagosome and mitochondrial were observed by electron microscopy. The expression of the autophagy-related proteins was detected by confocal microscopy. The results showed that Pink1, Parkin and LC3B expression was increased; SQSTM1/P62 expression was reduced. Electron microscopy revealed that the cells in the serum starvation group all produced autophagosomes. The fluorescence intensity of GFP-LC3B and GFP-Parkin increased. The Bax/Bcl-2 ratio, Pink1 and Parkin protein levels were profoundly reduced in the STC-KO. In addition, the increase in Mfn2, OPA1, DRP1 and LC3B proteins was attenuated; the increase in the apoptosis rate and amount of active oxygen was attenuated; the decrease in membrane potential; the decrease in ATP was reversed; the fluorescence intensity of GFP-LC3B and GFP-Parkin was increased. These results indicate that autophagy can be caused by serum starvation. Knocking out the porcine STC-1 gene had an obvious antiapoptotic effect on cells, the inhibition of serum starvation-induced autophagy. This is the first study to show that the porcine STC-1 gene confers self-protection in the absence of nutrients. To provide a theoretical basis for studying the effect of STC-1 on pig growth and development.


Asunto(s)
Autofagia , Mitocondrias , Animales , Porcinos , Mitocondrias/genética , Mitocondrias/metabolismo , Autofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/genética
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499099

RESUMEN

Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/metabolismo , Transición Epitelial-Mesenquimal/genética , Células A549 , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
14.
Neurochem Res ; 46(11): 2948-2957, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34268656

RESUMEN

Our previous studies revealed that the expression of stanniocalcin-1 (STC1) in astrocytes increased under hypoxic conditions. However, the role of STC1 in hypoxic astrocytes is not well understood. In this work, we first showed the increased expression of STC1 in astrocyte cell line and astrocytes in the brain tissues of mice after exposure to hypoxia. Then, we found that knockdown of STC1 inhibited cell viability and increased apoptosis. These effects were mediated by decreasing the levels of SIRT3, UCP2, and glycolytic genes and increasing the levels of ROS. Further studies suggested that STC1 silencing promoted oxidative stress and suppressed glycolysis by downregulating AMPKα1. Moreover, HIF-1α knockdown in hypoxic astrocytes led to decreased expression of STC1 and AMPKα1, indicating that the expression of STC1 was regulated by HIF-1α. In conclusion, our study showed that HIF-1α-induced STC1 could protect astrocytes from hypoxic damage by regulating glycolysis and redox homeostasis in an AMPKα1-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Hipoxia de la Célula/fisiología , Citoprotección/fisiología , Glicoproteínas/biosíntesis , Hipoxia/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Animales , Astrocitos/patología , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Silenciamiento del Gen/métodos , Humanos , Hipoxia/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Circ J ; 85(5): 657-666, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33716265

RESUMEN

BACKGROUND: Although adipose-derived stem cell (ADSC) sheets improve the cardiac function after myocardial infarction (MI), underlying mechanisms remain to be elucidated. The aim of this study was to determine the fate of transplanted ADSC sheets and candidate angiogenic factors released from ADSCs for their cardiac protective actions.Methods and Results:MI was induced by ligation of the left anterior descending coronary artery. Sheets of transgenic (Tg)-ADSCs expressing green fluorescence protein (GFP) and luciferase or wild-type (WT)-ADSCs were transplanted 1 week after MI. Both WT- and Tg-ADSC sheets improved cardiac functions evaluated by echocardiography at 3 and 5 weeks after MI. Histological examination at 5 weeks after MI demonstrated that either sheet suppressed fibrosis and increased vasculogenesis. Luciferase signals from Tg-ADSC sheets were detected at 1 and 2 weeks, but not at 4 weeks, after transplantation. RNA sequencing of PKH (yellow-orange fluorescent dye with long aliphatic tails)-labeled Tg-ADSCs identified mRNAs of 4 molecules related to angiogenesis, including those of Esm1 and Stc1 that increased under hypoxia. Administration of Esm1 or Stc1 promoted tube formation by human umbilical vein endothelial cells. CONCLUSIONS: ADSC sheets improved cardiac contractile functions after MI by suppressing cardiac fibrosis and enhancing neovascularization. Transplanted ADSCs existed for >2 weeks on MI hearts and produced the angiogenic factors Esm1 and Stc1, which may improve cardiac functions after MI.


Asunto(s)
Tejido Adiposo , Insuficiencia Cardíaca , Infarto del Miocardio , Inductores de la Angiogénesis , Animales , Insuficiencia Cardíaca/terapia , Células Endoteliales de la Vena Umbilical Humana , Humanos , Infarto del Miocardio/terapia , Ratas , Trasplante de Células Madre
16.
J Clin Biochem Nutr ; 69(2): 188-202, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34616110

RESUMEN

Supported with significant rejuvenating and regenerating actions of mesenchymal stem cells (MSCs) in various gastrointestinal diseases including Helicobacter pylori (H. pylori)-associated gastric diseases, we have compared these actions among placenta derived-MSCs (PD-MSCs), umbilical cord derived-MSCs (UC-MSCs), and adipose tissue derived-MSCs (AD-MSCs) and explored contributing genes implicated in rejuvenation of H. pylori-chronic atrophic gastritis (CAG) and tumorigenesis. In this study adopting H. pylori-initiated, high salt diet-promoted gastric carcinogenesis model, we have administered three kinds of MSCs around 15-18 weeks in H. pylori infected C57BL/6 mice and sacrificed at 24 and 48 weeks, respectively, in order to either assess the rejuvenating capability or anti-tumorigenesis. At 24 weeks, MSCs all led to significantly mitigated atrophic gastritis, for which significant inductions of autophagy, preservation of tumor suppressive 15-PGDH, attenuated apoptosis, and efficient efferocytosis was imposed with MSCs administration during atrophic gastritis. At 48 weeks, MSCs administered during H. pylori-associated atrophic gastritis afforded significant blocking the progression of CAG, as evidenced with statistically significant reduction in H. pylori-associated gastric tumor (p<0.05) accompanied with significant decreases in IL-1ß, COX-2, STAT3, and NF-κB. Combined together with the changes of stanniocalcin-1 (STC-1), thrombospondin-1 (TSP-1), and IL-10 known as biomarkers reflecting stem cell activities at 48 weeks after H. pylori, PD-MSCs among MSCs afforded the best rejuvenating action against H. pylori-associated CAG via additional actions of efferocytosis, autophagy, and anti-apoptosis at 24 weeks. In conclusion, MSCs, especially PD-MSCs, exerted rejuvenating actions against H. pylori-associated CAG via anti-mutagenesis of IL-10, CD-36, ATG5 and cancer suppressive influences of STC-1, TSP-1, and 15-PGDH.

17.
Acta Pharmacol Sin ; 41(11): 1476-1486, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32934346

RESUMEN

Recent studies demonstrate that diet quercetin (Quer) has obvious bone protective effects on ovariectomized rodents but thus far there is no direct evidence to support the inhibitory effect of Quer on bone loss caused by long-term unloading. In the present study, we investigated whether Quer could prevent bone loss induced by unloading in mice. Mice were subjected to hindlimb suspension (HLS) and received Quer (25, 50, 100 mg· kg-1 ·day-1, ig) for 4 weeks. Before euthanasia blood sample was collected; the femurs were harvested and subjected to MicroCT analysis. We showed that Quer administration markedly improved bone microstructure evidenced by dose-dependently reversing the reduction in bone volume per tissue volume, trabecular number, and bone mineral density, and the increase of trabecular spacing in mice with HLS. Analysis of serum markers and bone histometric parameters confirmed that Quer at both middle and high doses significantly decreased bone resorption-related markers collagen type I and tartrate-resistant acid phosphatase 5b, and increased bone formation-related marker procollagen 1 N-terminal propeptide as compared with HLS group. Treatment with Quer (1, 2, 5 µM) dose-dependently inhibited RANKL-induced osteoclastogenesis through promoting the expression of antioxidant hormone stanniocalcin 1 (STC1) and decreasing ROS generation; knockdown of STC1 blocked the inhibitory effect of Quer on ROS generation. Knockdown of STC1 also significantly promoted osteoclastogenesis in primary osteoclasts. In conclusion, Quer protects bones and prevents unloading-caused bone loss in mice through STC1-mediated inhibition of osteoclastogenesis. The findings suggest that Quer has the potential to prevent and treat off-load bone loss as an alternative supplement.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Resorción Ósea/prevención & control , Glicoproteínas/metabolismo , Osteogénesis/efectos de los fármacos , Quercetina/uso terapéutico , Animales , Resorción Ósea/patología , Huesos/efectos de los fármacos , Huesos/patología , Suspensión Trasera , Masculino , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Ligando RANK/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Gen Comp Endocrinol ; 286: 113298, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31606465

RESUMEN

Stanniocalcin (STC-1), a kind of glycoprotein hormone, was first found in fish and mainly regulates calcium/phosphorus metabolism in the body. To explore the biological function of the porcine STC-1 gene, the effects of changes in stanniocalcin expression on cellular metabolism and mitochondrial function were studied. A vector overexpressing the STC-1 gene and an siRNA silencer of the STC-1 gene were transfected into porcine kidney epithelial PK15 cells. After the STC-1 gene expression level was induced to change, STC-1 protein- and mitochondrial function-related proteins such as PMP70, OPA, DRP, Mfn and STC-1-related acetylated protein were detected by Western blotting. Cell apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS), and ATP were detected using flow cytometry methods. Transmission electron microscopy was used to observe the changes in mitochondrial structure and morphology. The results showed that overexpression of the STC-1 gene could significantly upregulate the levels of PMP70, OPA, DRP and Mfn. STC-1 gene expression, which could decrease the apoptosis rate and reactive oxygen species production to significantly increase the cell membrane potential and reduce the formation of intracellular ATP, which also affected the morphology and number of mitochondria. The results were reversed when the STC-1 gene expression was silenced. The results suggested that the porcine STC-1 gene is closely related to cell growth metabolism and mitochondrial function, which influence the mitochondrial function-related proteins. The present study is useful for further understanding STC-1 gene function and provides a theoretical basis for improving the production characteristics of domestic pigs.


Asunto(s)
Glicoproteínas/metabolismo , Mitocondrias/metabolismo , Animales , Porcinos
19.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963306

RESUMEN

Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.


Asunto(s)
Colecistoquinina/metabolismo , Mucosa Intestinal/citología , Bebidas Alcohólicas , Animales , Línea Celular , Diltiazem/metabolismo , Fermentación/fisiología , L-Lactato Deshidrogenasa/metabolismo , Maleatos/metabolismo , Ratas , Ácido Succínico/metabolismo
20.
Cell Tissue Res ; 378(3): 471-483, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31410629

RESUMEN

Regulation of gut function depends on the detection and response to luminal contents. Luminal L-amino acids (L-AA) are detected by several receptors including metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4), calcium-sensing receptor (CaSR), GPRC family C group 6 subtype A receptor (GPRC6A) and umami taste receptor heterodimer T1R1/T1R3. Here, we show that murine mucosal homogenates and STC-1 cells, a murine enteroendocrine cell line, express mRNA for all L-AA receptors. Immunohistochemical analysis demonstrated the presence of all L-AA receptors on STC-1 with CaSR being most commonly expressed and T1R1 least expressed (35% versus 15% of cells); mGluRs and GPRC6a were intermediate (~ 20% of cells). Regarding coexpression of L-AA receptors, the mGluRs and T1R1 were similarly coexpressed with CaSR (10-12% of cells) whereas GPRC6a was coexpressed least (7% of cells). mGluR1 was coexpressed with GPRC6a in 11% of cells whereas coexpression between other receptors was less (2-8% of cells). CaSR and mGluR1 were coexpressed with glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) in 20-25% of cells whereas T1R1 and GPRC6a were coexpressed with GLP-1 and PYY less (8-12% of cells). Only mGluR4 showed differential coexpression with GLP-1 (13%) and PYY (21%). L-Phenylalanine (10 mM) caused a 3-fold increase in GLP-1 release, which was strongly inhibited by siRNA to CaSR indicating functional coupling of CaSR to GLP-1 release. The results suggest that not all STC-1 cells express (and coexpress) L-AA receptors to the same extent and that the pattern of response likely depends on the pattern of expression of L-AA receptors.


Asunto(s)
Colon , Células Enteroendocrinas/metabolismo , Intestino Delgado , Receptores de Aminoácidos/metabolismo , Animales , Línea Celular , Colon/citología , Colon/metabolismo , Células Enteroendocrinas/citología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA