Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Virol ; 97(1): e0171722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475867

RESUMEN

Hepatitis B virus (HBV) infection remains a public health problem worldwide. Persistent HBV infection relies on active transcription of the covalently closed circular DNA (cccDNA) in hepatocytes, which is less understood at the single-cell level. In this study, we isolated primary human hepatocytes from liver-humanized FRG mice infected with HBV and examined cccDNA transcripts in single cells based on 5' end sequencing. Our 5' transcriptome sequencing (RNA-seq) analysis unambiguously assigns different viral transcripts with overlapping 3' sequences and quantitatively measures viral transcripts for structural genes (3.5 kb, 2.4 kb, and 2.1 kb) and the nonstructural X gene (0.7 kb and related) in single cells. We found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. Results from cell infection assays with recombinant HBV show that nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Moreover, upon HBV infection, cccDNA apparently can be transcribed in the absence of HBx and produces HBx, needed for productive transcription of other viral genes. These results shed new light on cccDNA transcription at the single-cell level and provide insights useful for improving the treatment strategy against chronic HBV infection. IMPORTANCE Hepatitis B virus (HBV) infection can be effectively suppressed but rarely cured by available drugs. Chronic HBV infection is based on persistence of covalently closed circular DNA (cccDNA) and continuous infection and reinfection with HBV in the liver. Understanding transcriptional regulation of cccDNA will help to achieve permanent transcriptional silencing, i.e., functional cure of HBV. In our study, we found that an infected cell either can generate all viral transcripts, signifying active transcription, or presents only transcripts from the X gene and its associated enhancer I domain and no structural gene transcripts. The nonproductive transcription of cccDNA can be activated by incoming virus through superinfection. Upon an infection, cccDNA apparently can be transcribed in the absence of HBx to produce HBx, necessary for subsequent transcription of other HBV genes. Our studies shed new light on the mechanism of HBV infection and may have implications for a functional cure regimen for HBV.


Asunto(s)
ADN Circular , Hepatitis B Crónica , Sobreinfección , Animales , Humanos , Ratones , ADN Circular/genética , ADN Viral/genética , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Replicación Viral/genética , Hepatocitos , Proteínas Reguladoras y Accesorias Virales/genética
2.
Biol Reprod ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504504

RESUMEN

Follicular development is a critical process in reproductive biology that determines the number of oocytes and interacts with various cells within the follicle (such as oocytes, granulosa cells, cumulus cells and theca cells, etc.), and plays a vital role in fertility and reproductive health due to the dogma of a limited number of oogonia. Dysregulation of follicular development can lead to infertility problems and other reproductive disorders. To explore the physiological and pathological mechanisms of follicular development, immunology-based methods, microarrays, and next-generation sequencing have traditionally been used for characterization at the tissue level. However, with the proliferation of single-cell sequencing techniques, research has uncovered unique molecular mechanisms in individual cells that have been masked by previous holistic analyses. In this review, we briefly summarize the achievements and limitations of traditional methods in the study of follicular development. Simultaneously, we focus on how to understand the physiological process of follicular development at the single-cell level and reveal the relevant mechanisms leading to the pathology of follicular development and intervention targets. Moreover, we also summarize the limitations and application prospects of single cell sequencing in follicular development research.

3.
J Transl Med ; 21(1): 649, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735671

RESUMEN

BACKGROUND: Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are three nervous system diseases that partially overlap clinically and genetically. However, bulk RNA-sequencing did not accurately detect the core pathogenic molecules in them. The availability of high-quality single cell RNA-sequencing data of post-mortem brain collections permits the generation of a large-scale gene expression in different cells in human brain, focusing on the molecular features and relationships between diseases and genes. We integrated single-nucleus RNA-sequencing (snRNA-seq) datasets of human brains with AD, PD, and MS to identify transcriptomic commonalities and distinctions among them. METHODS: The snRNA-seq datasets were downloaded from Gene Expression Omnibus (GEO) database. The Seurat package was used for snRNA-seq data processing. The uniform manifold approximation and projection (UMAP) were utilized for cluster identification. The FindMarker function in Seurat was used to identify the differently expressed genes. Functional enrichment analysis was carried out using the Gene Set Enrichment Analysis (GSEA) and Gene ontology (GO). The protein-protein interaction (PPI) analysis of differentially expressed genes (DEGs) was analyzed using STRING database ( http://string-db.org ). SCENIC analysis was performed using utilizing pySCENIC (v0.10.0) based on the hg19-tss-centered-10 kb-10species databases. The analysis of potential therapeutic drugs was analyzed on Connectivity Map ( https://clue.io ). RESULTS: The gene regulatory network analysis identified several hub genes regulated in AD, PD, and MS, in which HSPB1 and HSPA1A were key molecules. These upregulated HSP family genes interact with ribosome genes in AD and MS, and with immunomodulatory genes in PD. We further identified several transcriptional regulators (SPI1, CEBPA, TFE3, GRHPR, and TP53) of the hub genes, which has important implications for uncovering the molecular crosstalk among AD, PD, and MS. Arctigenin was identified as a potential therapeutic drug for AD, PD, and MS. CONCLUSIONS: Together, the integrated snRNA-seq data and findings have significant implications for unraveling the shared and unique molecular crosstalk among AD, PD, and MS. HSPB1 and HSPA1A as promising targets involved in the pathological mechanisms of neurodegenerative diseases. Additionally, the identification of arctigenin as a potential therapeutic drug for AD, PD, and MS further highlights its potential in treating these neurological disorders. These discoveries lay the groundwork for future research and interventions to enhance our understanding and treatment of AD, PD, and MS.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Esclerosis Múltiple/genética , Enfermedad de Alzheimer/genética , ARN
4.
BMC Cancer ; 23(1): 444, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193981

RESUMEN

BACKGROUND: Cholangiocarcinoma (CHOL) is the second most common primary hepatic malignant tumor, following hepatocellular carcinoma (HCC). CHOL is highly aggressive and heterogeneous resulting in poor prognosis. The diagnosis and prognosis of CHOL has not improved in the past decade. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is reported to be associated with tumors, however, its role in CHOL has not been revealed. This study is mainly for exploring the prognostic values and potential function of ACSL4 in CHOL. METHODS: We investigated the expression level and prognostic value of ACSL4 in CHOL based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. TIMER2.0, TISIDB and CIBERSORT databases were utilized to assess the associations between ACSL4 and immune infiltration cells in CHOL. Single-cell sequencing data from GSE138709 was analyzed to study the expression of ACSL4 in different types of cells. ACSL4 co-expressed genes were analyzed by Linkedomics. Additionally, Western Blot, qPCR, EdU assay, CCK8 assay, transwell assay and wound healing assay were performed to further confirm the roles of ACSL4 in the pathogenesis of CHOL. RESULTS: We found that the level of ACSL4 was higher in CHOL and it was correlated with the diagnosis and prognosis of CHOL patients. Then, we observed that the infiltration level of immune cells was related to the level of ACSL4 in CHOL. Moreover, ACSL4 and its co-expressed genes were mainly enriched in metabolism-related pathway and ACSL4 is also a key pro-ferroptosis gene in CHOL. Finally, knockdown of ACSL4 could reverse the tumor-promoting effect of ACSL4 in CHOL. CONCLUSIONS: The current findings demonstrated ACSL4 may as a novel biomarker for CHOL patients, which might regulate immune microenvironment and metabolism resulting in poor prognosis.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Pronóstico , Colangiocarcinoma/genética , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Microambiente Tumoral/genética
5.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762493

RESUMEN

Despite the numerous treatments for triple-negative breast cancer (TNBC), chemotherapy is still one of the most effective methods. However, the impact of chemotherapy on immune cells is not yet clear. Therefore, this study aims to explore the different roles of immune cells and their relationship with treatment outcomes in the tumor and blood before and after paclitaxel therapy. We analyzed the single-cell sequencing data of immune cells in tumors and blood before and after paclitaxel treatment. We confirmed a high correlation between T cells, innate lymphoid cells (ILCs), and therapeutic efficacy. The differences in T cells were analyzed related to therapeutic outcomes before and after paclitaxel treatment. In the effective treatment group, post-treatment tumor-infiltrating CD8+ T cells were associated with elevated inflammation, cytokines, and Toll-like-receptor-related gene expression, which were expected to enhance anti-tumor capabilities in tumor immune cells. Moreover, we found that the expression of immune-checkpoint-related genes is also correlated with treatment outcomes. In addition, an ILC subgroup, b_ILC1-XCL1, in which the corresponding marker gene XCL1 was highly expressed, was mainly present in the effective treatment group and was also associated with higher patient survival rates. Overall, we found differences in gene expression in T cells across different groups and a correlation between the expression of immune checkpoint genes in T cells, the b_ILC1-XCL1 subgroup, and patient prognosis.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Inmunidad Innata , Linfocitos/metabolismo
6.
J Cell Physiol ; 237(5): 2469-2477, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35220586

RESUMEN

Discoid lateral meniscus (DLM) is more prone to injury than a normally shaped meniscus. No study has compared the gene expression and cell heterogeneity between discoid and normal menisci. We aimed to identify specific cell clusters and their marker genes in discoid meniscus, thereby providing a theoretical basis for the treatment and etiology of DLM. ScRNA-seq was used in DLM and osteoarthritis lateral meniscus (OAM) cells to identify cell subsets and their gene signatures. Pseudo-time analysis and immunohistochemical staining were used to investigate the temporal and spatial distribution of DLM-specific clusters. ScRNA-seq identified nine clusters originating from DLM and OAM, composed of seven empirically defined populations and two novel populations specific to DLM, namely, the prehypertrophic chondrocyte 2 (PreHTC-2) and regulatory chondrocyte (RegC-2) populations. Single-cell trajectory showed that RegC-2 and PreHTC-2 were mainly distributed in a specific cell fate, with the PreHTC-2 marker gene HAPLN1 highly expressed at the end of this fate. Immunohistochemical staining showed that HAPLN1 + cells were mainly distributed in the white zone of DLM. Matrix metalloproteinase (MMP) variants were expressed in DLM and OAM, with MMP2 highly expressed in OAM-dominant cell clusters, while MMP3 was highly expressed in DLM-dominant cell clusters. We concluded that two novel cell clusters including PreHTC-2 were identified using single-cell sequencing, which were mainly distributed in the white areas of DLM. Differentiated MMP expression in the trajectory may be a possible mechanism of DLM formation.


Asunto(s)
Meniscos Tibiales , Menisco , Humanos , Articulación de la Rodilla , Imagen por Resonancia Magnética , Estudios Retrospectivos , Análisis de Secuencia de ARN
7.
Biomark Res ; 12(1): 55, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831319

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS: Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS: ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS: This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.

8.
Heliyon ; 10(12): e32847, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975217

RESUMEN

Objective: Exploring the different molecular and clinicopathological features of nodal cancer based on single cell sequencing can reveal the intertumoral heterogeneity in cancer, and provide new ideas for early diagnosis, treatment and prognosis analysis of cancer. Methods: The hotspots, the features of worldwide scientific output, and the frontiers concerning single cell sequence related to cancer from 2011 to 2024 were determined using our bibliometric analysis. Web of Science Core Collection (WOSCC) database was searched for publications on single cell sequence associated with cancer that were published between 2011 and 2024. According to the journals, keywords, number of records, affiliations, citations, and countries, we conducted a bibliometric analysis. With the use of the data gathered from the WOSCC, geographic distribution was visualized, keyword, affiliation, and author cluster analyses were conducted, and co-cited references were reviewed and a descriptive analysis was also performed. Results: From the analysis, it was concluded that 6189 articles that were published between 2011 and 2024 in total were identified. Frontiers in immunology is the leading journal with the most publications in field of the research. The five clusters that were identified for hotspots included immunotherapy, single-cell RNA sequencing, hepatocellular carcinoma, proliferation, gene expression appeared the most frequently. Journals, nations, organizations, scholars with most contribution and most referenced publications globally were extracted. Studies have mostly concentrated on the spatial transcriptomics, pan-cancer analysis, hepatocellular carcinoma et al. Conclusion: Single-cell sequencing plays a significant role in tumor diagnosis, treatment and prognosis.

9.
Animals (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338108

RESUMEN

In vitro-fertilized (IVF) and parthenogenetically activated (PA) embryos, key to genetic engineering, face more developmental challenges than in vivo-developed embryos (IVV). We analyzed single-cell RNA-seq data from the oocyte to eight-cell stages in IVV, IVF, and PA porcine embryos, focusing on developmental differences during early zygotic genome activation (ZGA), a vital stage for embryonic development. (1) Our findings reveal that in vitro embryos (IVF and PA) exhibit more similar developmental trajectories compared to IVV embryos, with PA embryos showing the least gene diversity at each stage. (2) Significant differences in maternal mRNA, particularly affecting mRNA splicing, energy metabolism, and chromatin remodeling, were observed. Key genes like SMARCB1 (in vivo) and SIRT1 (in vitro) played major roles, with HDAC1 (in vivo) and EZH2 (in vitro) likely central in their complexes. (3) Across different types of embryos, there was minimal overlap in gene upregulation during ZGA, with IVV embryos demonstrating more pronounced upregulation. During minor ZGA, global epigenetic modification patterns diverged and expanded further. Specifically, in IVV, genes, especially those linked to H4 acetylation and H2 ubiquitination, were more actively regulated compared to PA embryos, which showed an increase in H3 methylation. Additionally, both types displayed a distinction in DNA methylation. During major ZGA, IVV distinctively upregulated genes related to mitochondrial regulation, ATP synthesis, and oxidative phosphorylation. (4) Furthermore, disparities in mRNA degradation-related genes between in vivo and in vitro embryos were more pronounced during major ZGA. In IVV, there was significant maternal mRNA degradation. Maternal genes regulating phosphatase activity and cell junctions, highly expressed in both in vivo and in vitro embryos, were degraded in IVV in a timely manner but not in in vitro embryos. (5) Our analysis also highlighted a higher expression of many mitochondrially encoded genes in in vitro embryos, yet their nucleosome occupancy and the ATP8 expression were notably higher in IVV.

10.
Front Immunol ; 15: 1346520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380322

RESUMEN

Background and aims: A complete understanding of disease pathophysiology in advanced liver disease is hampered by the challenges posed by clinical specimen collection. Notably, in these patients, a transjugular liver biopsy (TJB) is the only safe way to obtain liver tissue. However, it remains unclear whether successful sequencing of this extremely small and fragile tissue can be achieved for downstream characterization of the hepatic landscape. Methods: Here we leveraged in-house available single-cell RNA-sequencing (scRNA-seq) and single-nucleus (snRNA-seq) technologies and accompanying tissue processing protocols and performed an in-patient comparison on TJB's from decompensated cirrhosis patients (n = 3). Results: We confirmed a high concordance between nuclear and whole cell transcriptomes and captured 31,410 single nuclei and 6,152 single cells, respectively. The two platforms revealed similar diversity since all 8 major cell types could be identified, albeit with different cellular proportions thereof. Most importantly, hepatocytes were most abundant in snRNA-seq, while lymphocyte frequencies were elevated in scRNA-seq. We next focused our attention on hepatic myeloid cells due to their key role in injury and repair during chronic liver disease. Comparison of their transcriptional signatures indicated that these were largely overlapping between the two platforms. However, the scRNA-seq platform failed to recover sufficient Kupffer cell numbers, and other monocytes/macrophages featured elevated expression of stress-related parameters. Conclusion: Our results indicate that single-nucleus transcriptome sequencing provides an effective means to overcome complications associated with clinical specimen collection and could sufficiently profile all major hepatic cell types including all myeloid cell subsets.


Asunto(s)
Perfilación de la Expresión Génica , Hepatopatías , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Nuclear Pequeño , Cirrosis Hepática/genética
11.
J Pharm Anal ; 13(8): 880-893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719193

RESUMEN

Triptolide is a key active component of the widely used traditional Chinese herb medicine Tripterygium wilfordii Hook. F. Although triptolide exerts multiple biological activities and shows promising efficacy in treating inflammatory-related diseases, its well-known safety issues, especially reproductive toxicity has aroused concerns. However, a comprehensive dissection of triptolide-associated testicular toxicity at single cell resolution is still lacking. Here, we observed testicular toxicity after 14 days of triptolide exposure, and then constructed a single-cell transcriptome map of 59,127 cells in mouse testes upon triptolide-treatment. We identified triptolide-associated shared and cell-type specific differentially expressed genes, enriched pathways, and ligand-receptor pairs in different cell types of mouse testes. In addition to the loss of germ cells, our results revealed increased macrophages and the inflammatory response in triptolide-treated mouse testes, suggesting a critical role of inflammation in triptolide-induced testicular injury. We also found increased reactive oxygen species (ROS) signaling and downregulated pathways associated with spermatid development in somatic cells, especially Leydig and Sertoli cells, in triptolide-treated mice, indicating that dysregulation of these signaling pathways may contribute to triptolide-induced testicular toxicity. Overall, our high-resolution single-cell landscape offers comprehensive information regarding triptolide-associated gene expression profiles in major cell types of mouse testes at single cell resolution, providing an invaluable resource for understanding the underlying mechanism of triptolide-associated testicular injury and additional discoveries of therapeutic targets of triptolide-induced male reproductive toxicity.

12.
Adv Biol (Weinh) ; 7(10): e2300098, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37085744

RESUMEN

Though the occurrence of neuroinflammation after spinal cord injury (SCI) is essential for antigen clearance and tissue repair, excessive inflammation results in cell death and axon dieback. The effect of anti-inflammatory medicine used in clinical treatment remains debatable owing to the inappropriate therapeutic schedule that does not align with the biological process of immune reaction. A better understanding of the immunity process is critical to promote effective anti-inflammatory therapeutics. However, cellular heterogeneity, which results in complex cellular functions, is a major challenge. This study performs single-cell RNA sequencing by profiling the tissue proximity to the injury site at different time points after SCI. Depending on the analysis of single-cell data and histochemistry observation, an appropriate time window for anti-inflammatory medicine treatment is proposed. This work also verifies the mechanism of typical anti-inflammatory medicine methylprednisolone sodium succinate (MPSS), which is found attributable to the activation inhibition of cells with pro-inflammatory phenotype through the downregulation of pathways such as TNF, IL2, and MIF. These pathways can also be provided as targets for anti-inflammatory treatment. Collectively, this work provides a therapeutic schedule of 1-3 dpi (days post injury) to argue against classical early pulse therapy and provides some pathways for target therapy in the future.

13.
Front Immunol ; 14: 1220760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822927

RESUMEN

Background: Cuproptosis, a novel mode of cell death associated with the tricarboxylic acid (TCA) cycle, is relevant to the development of cancer. However, the impact of single-cell-based Cuproptosis-associated lncRNAs on the Tumor immune microenvironment (TIME) of Pancreatic adenocarcinoma (PAAD) and its potential value for individualized immunotherapy has not been clarified. Methods: 14 immune-related CRGs were screened by exploring the interaction between differentially expressed Immune-Related Genes (IRGs) and Cuproptosis-Related Genes (CRGs) in PAAD. Next, the expression amount and expression distribution of CRGs in single-cell samples were analyzed by focusing on 7-CRGs with significant expressions. On the one hand, MAP2K2, SOD1, and VEGFA, which were significantly differentially expressed between PAAD sites and normal tissues adjacent to them, were subjected to immunohistochemical validation and immune landscape analysis. On the other hand, from these 7-CRGs, prognostic signatures of lncRNAs were established by co-expression and LASSO-COX regression analysis, and their prognostic value and immune relevance were assessed. In addition, this study not only validated the hub CRGs and the lncRNAs constituting the signature in a PAAD animal model treated with immunotherapy-based combination therapy using immunohistochemistry and qRT-PCR but also explored the potential value of the combination of targeted, chemotherapy and immunotherapy. Results: Based on the screening of 7-CRGs significantly expressed in a PAAD single-cell cohort and their co-expressed Cuproptosis-Related lncRNAs (CRIs), this study constructed a prognostic signature of 4-CRIs named CIR-score. A Nomogram integrating the CIR-score and clinical risk factors was constructed on this basis to predict the individualized survival of patients. Moreover, high and low-risk groups classified according to the median of signatures exhibited significant differences in clinical prognosis, immune landscape, bioenrichment, tumor burden, and drug sensitivity. And the immunohistochemical and qRT-PCR results of different mouse PAAD treatment strategies were consistent with the trend of inter-group variability in drug sensitivity of hub CRGs and CIR-score. The combination of immunotherapy, targeted therapy, and chemotherapy exhibited a better tumor suppression effect. Conclusion: CIR-score, as a Cuproptosis-related TIME-specific prognostic signature based on PAAD single cells, not only predicts the prognosis and immune landscape of PAAD patients but also provides a new strategy for individualized immunotherapy-based combination therapy.


Asunto(s)
Adenocarcinoma , Apoptosis , Neoplasias Pancreáticas , ARN Largo no Codificante , Animales , Humanos , Ratones , Páncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Cobre , Neoplasias Pancreáticas
14.
Front Cell Dev Biol ; 11: 1142929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936687

RESUMEN

Preterm birth was previously identified as a high-risk factor for the long-term development of chronic kidney disease. However, the detailed pattern of podocyte (PD) changes caused by preterm birth and the potential mechanism underlying this process have not been well clarified. In present study, a rat model of preterm birth was established by delivery of pups 2 days early and podometric methods were applied to identify the changes in PDs number caused by preterm birth. In addition, single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis were performed in the preterm rat kidney to explore the possible mechanism caused by preterm birth. As results, when the kidney completely finished nephrogenesis at the age of 3 weeks, a reduction in the total number of differentiated PDs in kidney sections was detected. In addition, 20 distinct clusters and 12 different cell types were identified after scRNA-seq in preterm rats (postnatal day 2) and full-term rats (postnatal day 0). The numbers of PDs and most types of inherent kidney cells were decreased in the preterm birth model. In addition, 177 genes were upregulated while 82 genes were downregulated in the PDs of full-term rats compared with those of preterm rats. Further functional GO analysis revealed that ribosome-related genes were enriched in PDs from full-term rats, and kidney development-related genes were enriched in PDs from preterm rats. Moreover, known PD-specific and PD precursor genes were highly expressed in PDs from preterm rats, and pseudotemporal analysis showed that PDs were present earlier in preterm rats than in full-term rats. In conclusion, the present study showed that preterm birth could cause a reduction in the number of differentiated PDs and accelerate the differentiation of PDs.

15.
Front Cell Dev Biol ; 11: 1286011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274272

RESUMEN

Intervertebral disc (IVD) degeneration is a common pathological condition associated with low back pain. Recent evidence suggests that mesenchymal signaling cells (MSCs) promote IVD regeneration, but underlying mechanisms remain poorly defined. One postulated mechanism is via modulation of macrophage phenotypes. In this manuscript, we tested the hypothesis that MSCs produce trophic factors that alter macrophage subsets. To this end, we collected conditioned medium from human, bone marrow-derived STRO3+ MSCs. We then cultured human bone marrow-derived macrophages in MSC conditioned medium (CM) and performed single cell RNA-sequencing. Comparative analyses between macrophages cultured in hypoxic and normoxic MSC CM showed large overlap between macrophage subsets; however, we identified a unique hypoxic MSC CM-induced macrophage cluster. To determine if factors from MSC CM simulated effects of the anti-inflammatory cytokine IL-4, we integrated the data from macrophages cultured in hypoxic MSC CM with and without IL-4 addition. Integration of these data sets showed considerable overlap, demonstrating that hypoxic MSC CM simulates the effects of IL-4. Interestingly, macrophages cultured in normoxic MSC CM in the absence of IL-4 did not significantly contribute to the unique cluster within our comparison analyses and showed differential TGF-ß signaling; thus, normoxic conditions did not approximate IL-4. In addition, TGF-ß neutralization partially limited the effects of MSC CM. In conclusion, our study identified a unique macrophage subset induced by MSCs within hypoxic conditions and supports that MSCs alter macrophage phenotypes through TGF-ß-dependent mechanisms.

16.
Front Immunol ; 13: 1024931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341345

RESUMEN

The tumor microenvironment is complicated and continuously evolving. This study was devoted to the identification of potential prognostic biomarkers based on the tumor microenvironment associated with immunotherapy for melanoma. This study integrates a couple of melanoma single cell and transcriptome sequencing datasets and performs a series of silico analyses as nicely as validation of molecular biology techniques. A core set of immune escape related genes was identified through Lawson et al. and the ImmPort portal. The differential proteins were identified through the cBioPortal database. Regression analysis was used to profile independent prognostic factors. Correlation with the level of immune cell infiltration was evaluated by multiple algorithms. The capacity of LCK to predict response was assessed in two independent immunotherapy cohorts. High LCK expression is associated with better prognosis, high levels of TILs and better clinical staging. Pathway analysis showed that high expression of LCK was significantly associated with activation of multiple tumor pathways as well as immune-related pathways. LCK expression tends to be higher in immunotherapy-responsive patients and those with lower IC50s treated with chemotherapeutic agents. RT-qPCR detected that LCK expression was significantly upregulated in melanoma cell lines. Single-cell transcriptome analysis showed that LCK was specifically highly expressed on T cells. CellChat analysis confirmed that LCK in C2 subpopulations and T cell subpopulations exerted immune promotion between cells by binding to CD8 receptors. In conclusion, LCK is a reliable biomarker for melanoma and will contribute to its immunotherapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma , Humanos , Pronóstico , Biomarcadores de Tumor/metabolismo , Melanoma/patología , Microambiente Tumoral/genética
17.
Comput Biol Med ; 143: 105279, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35134605

RESUMEN

Single-Cell RNA sequencing technology provides an opportunity to discover gene regulatory networks(GRN) that control cell differentiation and drive cell type transformation. However, it is faced with the challenge of high loss and high noise of sequencing data and contains many pseudo-connections. To solve these problems, we propose a framework called Fusion prior gene network for Gene Regulatory Network inference Accuracy Enhancement(FGRNAE) to infer a high reliable gene regulatory network. Specifically, based on the Single-Cell RNA-sequencing Network Propagation and network Fusion(scNPF) preprocessing framework, we employ the Random Walk with Restart on the prior gene network to interpolate the missing data. Furthermore, we infer the network using the Random Forest algorithm with the results achieved above. In addition, we apply data from the Co-Function Network to build a meta-gene network and select the regulatory connection with the Markov Random Field. Extensive experiments based on datasets from BEELINE validate the effectiveness of our framework for improving the accuracy of inference.

18.
Front Mol Biosci ; 9: 984712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111134

RESUMEN

Background: Glioma is the most fatal neoplasm among the primary intracranial cancers. Necroptosis, a form of programmed cell death, is correlated with tumor progression and immune response. But, the role of necroptosis-related genes (NRGs) in glioma has not been well-uncovered. Methods: Single-cell and bulk RNA sequencing data, obtained from publicly accessed databases, were used to establish a necroptosis-related gene signature for predicting the prognosis of glioma patients. Multiple bioinformatics algorithms were conducted to evaluate the efficacy of the signature. The relative mRNA level of each signature gene was validated by quantitative real-time reverse transcription PCR (qRT-PCR) in glioma cell lines compared to human astrocytes. Results: In this predicted prognosis model, patients with a high risk score showed a shorter overall survival, which was verified in the testing cohorts. The signature risk score was positively related with immune cell infiltration and some immune check points, such as CD276 (B7-H3), CD152 (CTLA-4), CD223 (LAG-3), and CD274 (PD-L1). Single-cell RNA sequencing analysis confirmed that the glioma microenvironment consists of various immune cells with different markers. The eight NRGs of the signature were detected to be expressed in several immune cells. QRT-PCR results verified that all the eight signature genes were differentially expressed between human astrocytes and glioma cells. Conclusion: The eight NRGs correlate with the immune microenvironment of glioma according to our bioinformatics analysis. This necroptosis-related gene signature may evaluate the precise methodology of predicting prognosis of glioma and provide a novel thought in glioma investigation.

19.
Front Bioeng Biotechnol ; 10: 849798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646860

RESUMEN

Upper gastrointestinal cancer (UGIC) is an aggressive carcinoma with increasing incidence and poor outcomes worldwide. Here, we collected 39,057 cells, and they were annotated into nine cell types. By clustering cancer stem cells (CSCs), we discovered the ubiquitous existence of sub-cluster CSCs in all UGICs, which is named upper gastrointestinal cancer stem cells (UGCSCs). The identification of UGCSC function is coincident with the carcinogen of UGICs. We compared the UGCSC expression profile with 215,291 single cells from six other cancers and discovered that UGCSCs are specific tumor stem cells in UGIC. Exploration of the expression network indicated that inflammatory genes (CXCL8, CXCL3, PIGR, and RNASE1) and Wnt pathway genes (GAST, REG1A, TFF3, and ZG16B) are upregulated in tumor stem cells of UGICs. These results suggest a new mechanism for carcinogenesis in UGIC: mucosa damage and repair caused by poor eating habits lead to chronic inflammation, and the persistent chronic inflammation triggers the Wnt pathway; ultimately, this process induces UGICs. These findings establish the core signal pathway that connects poor eating habits and UGIC. Our system provides deeper insights into UGIC carcinogens and a platform to promote gastrointestinal cancer diagnosis and therapy.

20.
Front Endocrinol (Lausanne) ; 13: 944751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937796

RESUMEN

Background: Osteoporosis often occurs with carotid atherosclerosis and causes contradictory calcification across tissue in the same patient, which is called the "calcification paradox". Circulating monocytes may be responsible for this unbalanced ectopic calcification. Here, we aimed to show how CD14+ monocytes contribute to the pathophysiology of coexisting postmenopausal osteoporosis and carotid atherosclerosis. Methods: We comprehensively analyzed osteoporosis data from the mRNA array dataset GSE56814 and the scRNA-seq dataset GSM4423510. Carotid atherosclerosis data were obtained from the GSE23746 mRNA dataset and GSM4705591 scRNA-seq dataset. First, osteoblast and vascular SMC lineages were annotated based on their functional expression using gene set enrichment analysis and AUCell scoring. Next, pseudotime analysis was applied to draw their differentiated trajectory and identify the key gene expression changes in crossroads. Then, ligand-receptor interactions between CD14+ monocytes and osteoblast and vascular smooth muscle cell (SMC) lineages were annotated with iTALK. Finally, we selected calcification paradox-related expression in circulating monocytes with LASSO analysis. Results: First, we found a large proportion of delayed premature osteoblasts in osteoporosis and osteogenic SMCs in atherosclerosis. Second, CD14+ monocytes interacted with the intermediate cells of the premature osteoblast and osteogenic SMC lineage by delivering TGFB1 and TNFSF10. This interaction served as a trigger activating the transcription factors (TF) SP1 and NFKB1 to upregulate the inflammatory response and cell senescence and led to a retarded premature state in the osteoblast lineage and osteogenic transition in the SMC lineage. Then, 76.49% of common monocyte markers were upregulated in the circulating monocytes between the two diseases, which were related to chemotaxis and inflammatory responses. Finally, we identified 7 calcification paradox-related genes on circulating monocytes, which were upregulated in aging cells and downregulated in DNA repair cells, indicating that the aging monocytes contributed to the development of the two diseases. Conclusions: Our work provides a perspective for understanding the triggering roles of CD14+ monocytes in the development of the calcification paradox in osteoporosis- and atherosclerosis-related cells based on combined scRNA and mRNA data. This study provided us with an elucidation of the mechanisms underlying the calcification paradox and could help in developing preventive and therapeutic strategies.


Asunto(s)
Aterosclerosis , Calcinosis , Enfermedades de las Arterias Carótidas , Osteoporosis , Aterosclerosis/metabolismo , Calcinosis/complicaciones , Calcinosis/genética , Enfermedades de las Arterias Carótidas/complicaciones , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/metabolismo , Humanos , Monocitos/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Osteoporosis/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción Sp1/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA