RESUMEN
Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.
RESUMEN
Despite the fact that inflammatory bowel disease (IBD) has still no recognised therapy, treatments which have proven at least mildly successful in improving IBD symptoms include anti-inflammatory drugs and monoclonal antibodies targeting pro-inflammatory cytokines. Resveratrol, a natural (poly)phenol found in grapes, red wine, grape juice and several species of berries, has been shown to prevent and ameliorate intestinal inflammation. Here, we discuss the role of resveratrol in the improvement of inflammatory disorders involving the intestinal mucosa. The present review covers three specific aspects of resveratrol in the framework of inflammation: (i) its content in food; (ii) its intestinal absorption and metabolism; and (iii) its anti-inflammatory effects in the intestinal mucosa in vitro and in the very few in vivo studies present to date. Actually, if several studies have shown that resveratrol may down-regulate mediators of intestinal immunity in rodent models, only two groups have performed intervention studies in human subjects using resveratrol as an agent to improve IBD conditions. The effects of resveratrol should be further investigated by conducting well-designed clinical trials, also taking into account different formulations for the delivery of the bioactive compound.
Asunto(s)
Dieta , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Resveratrol/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Polifenoles/farmacocinética , Polifenoles/farmacología , Resveratrol/farmacocinética , Resveratrol/farmacologíaRESUMEN
Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpl (lox/lox) mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis.