Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 146: 107293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507998

RESUMEN

In this work, we synthesized a series of indole derivatives to cope with the current increasing fungal infections caused by drug-resistant Candida albicans. All compounds were evaluated for antifungal activities against Candida albicans in vitro, and the structure-activity relationships (SARs) were analyzed. The results indicated that indole derivatives used either alone or in combination with fluconazole showed good activities against fluconazole-resistant Candida albicans. Further mechanisms studies demonstrated that compound 1 could inhibit yeast-to-hypha transition and biofilm formation of Candida albicans, increase the activity of the efflux pump, the damage of mitochondrial function, and the decrease of intracellular ATP content. In vivo studies, further proved the anti-Candida albicans activity of compound 1 by histological observation. Therefore, compound 1 could be considered as a novel antifungal agent.


Asunto(s)
Candida albicans , Fluconazol , Fluconazol/farmacología , Biopelículas , Antifúngicos , Relación Estructura-Actividad , Indoles/farmacología , Pruebas de Sensibilidad Microbiana
2.
J Nanobiotechnology ; 22(1): 21, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183090

RESUMEN

Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.


Asunto(s)
Nanopartículas del Metal , Periodontitis , Óxido de Zinc , Animales , Humanos , Óxidos , Oro , Nanopartículas del Metal/uso terapéutico , Periodontitis/tratamiento farmacológico , Antibacterianos/farmacología , Mamíferos
3.
J Environ Sci (China) ; 141: 261-276, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408827

RESUMEN

Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Conductividad Eléctrica , Porosidad
4.
J Fluoresc ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656303

RESUMEN

A simple and low-cost green preparation method was used for BSA capped silver nanoclusters (BSA-Ag NCs) as turn on fluorescent probe for glucose. Non-enzymatic fast glucose detection assay with a widest concentration range was proposed which requires neither nanoclusters (NCs) modification nor complicated enzyme immobilization. The DLS analysis, HRTEM patterns, fluorescence and UV-visible measurement well supported the synthesis product. The advantages of the fabricated glucose sensor based on fluorescence increasing of probe compared to other established optical techniques was inspected and summarized as well. The glucose sensor exhibited a high sensitivity, fast response time (in seconds), satisfactory selectivity, well stability (at least two months), low detection limit (31 µmol L- 1) and a wide concentration response (three orders of magnitudes) to glucose between 0.1 and 92 mmol L- 1 as calibration plot. A theoretical model of the sensing mechanism based on the binding interaction of glucose to BSA-Ag NCs is proposed and data fitting demonstrated a good agreement between the experimental and theoretically calculated fluorescence data. The facile preparation and excellent sensing performance of BSA-Ag NCs in the real samples (plasma and juice) make sure that synthesized probe material is a promising candidate for advanced enzyme-free glucose sensing approach.

5.
Ecotoxicol Environ Saf ; 262: 115287, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567105

RESUMEN

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment. In this study, we relocated a complete degradation pathway of 2,4-DNT into Escherichia coli to degrade 2,4-DNT completely. Eight genes from Burkholderia sp. strain were re-synthesized by PCR-based two-step DNA synthesis method and introduced into E. coli. Degradation experiments revealed that the transformant was able to degrade 2,4-DNT completely in 12 h when the 2,4-DNT concentration reached 3 mM. The organic acids in the tricarboxylic acid cycle were detected to prove the degradation of 2,4-DNT through the artificial degradation pathway. The results proved that 2,4-DNT could be completely degraded by the engineered bacteria. In this study, the complete degradation pathway of 2,4-DNT was constructed in E. coli for the first time using synthetic biology techniques. This research provides theoretical and experimental bases for the actual treatment of 2,4-DNT, and lays a technical foundation for the bioremediation of organic pollutants.

6.
Int J Hydrogen Energy ; 47(62): 26038-26052, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34903909

RESUMEN

In this work, an innovative integrated system that is incorporated from solid oxide electrolysis cells and an oxygen separator membrane is assessed and optimized from the techno-economic aspects to respond to oxygen, hydrogen, and nitrogen demands for hospitals and other health care applications. Besides, a parametric comparison is conducted to apprehend the weights of parameters changes on the performance of criteria. Relying on the assessments, from the hydrogen production of 1 kg/s, 23.19 kg/s of oxygen, and 50.22 kg/s of nitrogen are produced. The parametric study shows that by raising the working temperature of the electrolyzer, the cell voltage variation has descending trend and the power consumption of the system is decreased by 19%. Finally, the results of multi-criteria optimization on the Pareto front reveal that in the optimal case, the system payback period is attained at about 5.32 years and the exergy efficiency of 92.47%, which are improved 16.6% and 16.2% compared to the base case, sequentially. Consequently, this system is proposed to consider as a cost-effective and reliable option towards its vital and valuable productions, in the pandemic period and after's.

7.
Bull Environ Contam Toxicol ; 107(2): 320-326, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34110442

RESUMEN

Cadmium (Cd), a toxic heavy metal, is harmful to plants and human health. Glutathione (GSH) could alleviate Cd toxicity of plant species, whereas its mechanism responsible for wheat remains poorly understood. Here, we found that exogenous GSH application significantly increased the fresh and dry weight, root elongation, chlorophyll contents, while decreased the contents of malondialdehyde (MDA) and GSH, and translocation factor of Cd compared with Cd treatment. Moreover, GSH application significantly increased activities of antioxidant enzymes and expression of related genes, which involved in GSH synthesis, especially in roots. In addition, we found that GSH application suppressed Cd-induced expression of metal transporter genes TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1 and TaIRT2 in roots. Taken together, our results suggested that GSH could alleviate Cd toxicity in wheat by increasing GSH synthesis gene expression or suppressing Cd transporter genes expression, and further affecting Cd uptake and translocation in wheat plants.


Asunto(s)
Cadmio , Triticum , Antioxidantes , Cadmio/toxicidad , Clorofila , Glutatión , Humanos , Raíces de Plantas
8.
Chem Rec ; 20(9): 1043-1073, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32779364

RESUMEN

Gold nanorods are anisotropic and exhibit different optical characteristics in both transverse and longitudinal directions, so the plasmon resonance in the near-infrared region will reflect two absorption peaks. Because of strong enhancements of electromagnetic fields of gold nanorods, gold nanorods are widely used in medical treatment, biological detection, sensors, solar cells and other fields. Since rapid developments of gold nanorods, it is necessary to sort out the recent achievements. In this review, we select three classifications of single nanorods/nanowires, dimers and assembled nanorods to introduce their syntheses methods, optical properties and applications respectively. We firstly overview the history of nanorods/nanowires syntheses and summarize the improvement of the commonly utilized seed-mediated growth synthesis method; and then, physically, nano-plasmonic and optical properties of single and assembled nanorod/nanowires are concluded in detail. Lastly, we mainly summarize the recent advances in applications and provide perspective in different fields.

9.
Environ Res ; 182: 108997, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31835116

RESUMEN

Design of experiment and hybrid genetic algorithm optimized multilayer perceptron (GA-MLP) artificial neural network have been employed to model and predict dye decomposition capacity of the biologically synthesized nano CdS diatomite composite. Impact of independent variables such as, light (UV: on-off), solution pH (5-8), composite weight (CW: 0.5-1 mg), initial dye concentration (DC: 10-20 mg/l) and contact time (0-120 min), mainly in two levels, were examined to evaluate dye removal efficiency of the composite. According to the developed response surface based on the factorial design, all independent variables shown positive interactive effect on dye removal (UV > CW > pH > DC), as well as the pH-CW mutual interaction, while both UV-DC and CW-DC had antagonistic effect. The pH-CW interaction was more influential than pH and DC. Incorporation of the intermediate measurements of dye removal between the start and final contact times in GA-MLP approach, had found to improve the accuracy and predictability of the GA-MLP model. Based on the closeness of the R2 (0.98), root mean square error (1.03), variance accounted for (98.23%), mean absolute error (0.61) and model predictive error (9.46%) to their desirable levels, proposed GA-MLP model outperformed the factorial design model. Finally, optimal parameter choice for maximum dye removal using factorial design and GA-MLP were found as: UV (on), pH (9), CW (1 g) and DC (10 mg/l) and UV (on), pH (8.85), CW (0.92 g), DC (12.3 mg/l) and T (117 0.6 min), respectively.


Asunto(s)
Tierra de Diatomeas , Redes Neurales de la Computación , Predicción , Proyectos de Investigación
10.
Biochem J ; 475(17): 2713-2725, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30049895

RESUMEN

Cryptomeridiol, a typical eudesmane diol, is the active principle component of the antispasmodic Proximol. Although it has been used for many years, the biosynthesis pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E,E)-farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae Optimized assays including modular pathway engineering and the CRISPR-cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae The best engineered strain TE9 (BY4741 erg9::Δ-200-176 rox1::mut/pYX212-IDI + TwCS/p424-tHMG1) ultimately produced 19.73 mg/l cryptomeridiol in a shake flask culture.


Asunto(s)
Liasas de Carbono-Carbono , Microorganismos Modificados Genéticamente , Naftalenos/metabolismo , Proteínas de Plantas , Saccharomyces cerevisiae , Sesquiterpenos de Eudesmano/biosíntesis , Tripterygium/genética , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Ingeniería Metabólica , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos de Eudesmano/genética , Tripterygium/enzimología
11.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3758-3762, 2019 Sep.
Artículo en Zh | MEDLINE | ID: mdl-31602950

RESUMEN

Ginsenoside Rh_2,firstly isolated from red ginseng,is protopanaxadiol type of steroidal saponin. Rh_2 possessed variety of activities,but bioavailability of oral administration Rh_2 was extremely low due to poor absorption. Moreover,ginsenoside Rh_2 exhibited toxicity on human normal cells. Therefore,to improve stronger anti-tumor activity and attenuate toxicity,it was essential to design and optimize chemical structure of ginsenoside Rh_2. Through n-octanoylchloride modifications,a novel ester derivative of ginsenoside Rh_2 named caprylic acid monoester of Rh_2( C-Rh_2) was designed and synthesized. Structure of novel ginsenoside derivative was identified by1 D and 2 D NMR,as well as ESI-MS analyses. Anti-tumor effect of C-Rh_2 was tested on H22 tumor bearing mice. C-Rh_2 displayed certain anti-tumor activities and exhibited less toxicity than Rh_2. In the present study,C-Rh_2 as ester form of ginsenoside Rh_2 showed better anti-tumor activity and less toxicity,but the specific mechanism needs further investigation.


Asunto(s)
Ginsenósidos/síntesis química , Ginsenósidos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Animales , Caprilatos , Ratones , Estructura Molecular , Saponinas
12.
Microb Pathog ; 116: 44-48, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29330059

RESUMEN

Biosynthesized nanoparticles have an incredible application in biomedicine owing to its simplicity, eco-friendly properties and low cost. The present study aims to determine the green synthesized zinc oxide nanoparticles from methanolic leaf extract of Glycosmis pentaphylla. The synthesized nanoparticles were characterized using UV-VIS Spectroscopy, Fluorescence spectrometer, FT-IR, XRD, SEM with EDAX and TEM. The confirmations of synthesized nanoparticles were characterized by peak at 351 and 410 nm in the UV-VIS spectrum and photoluminescence spectrum respectively. FT-IR studies revealed the functional group of the nanoparticles. The XRD data showed the crystalline nature of the nanoparticles and EDAX measurements indicated the 20.70% of highly pure zinc oxide metal. The morphological characterization of synthesized zinc oxide nanoparticles was analyzed by SEM and TEM and size of the particles were ranging from 32 to 36 nm. The synthesized zinc oxide nanoparticles exhibited interesting antimicrobial activity against pathogenic organisms. In addition, this is the first report on leaf mediated synthesis of zinc oxide (ZnO) nanoparticles from Glycosmis pentaphylla.


Asunto(s)
Antiinfecciosos/metabolismo , Nanopartículas/metabolismo , Rutaceae/metabolismo , Óxido de Zinc/metabolismo , Aspergillus/efectos de los fármacos , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Nanopartículas/química , Extractos Vegetales/metabolismo , Espectrometría por Rayos X , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
13.
Sensors (Basel) ; 17(1)2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28075367

RESUMEN

Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

14.
Bioorg Med Chem ; 22(1): 358-65, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24296013

RESUMEN

A series of thieno[3,2-d]pyrimidines bearing a hydroxamic acid moiety as novel HDAC inhibitors were designed and synthesized. The structures of the new synthesized compounds were confirmed using IR, (1)H, (13)C NMR spectrum. Compounds 11-13 showed potent inhibitory activities against HDACs with IC50 values at 0.38, 0.49 and 0.61 µM. Most of target compounds displayed strong anti-proliferative activity by a MTT assay on three human cancer cell lines including HCT-116, MCF-7 and HeLa. Compound 11, having potent inhibitory activities against HDACs, induced apoptosis and G2/M cell cycle arrest in HCT-116 cell line.


Asunto(s)
Inhibidores de Histona Desacetilasas/síntesis química , Pirimidinas/química , Inhibidores de Histona Desacetilasas/química , Humanos , Pirimidinas/farmacología , Relación Estructura-Actividad
15.
Int Immunopharmacol ; 127: 111386, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38109839

RESUMEN

Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Tianfenicol/análogos & derivados , Humanos , Animales , Ratones , Mucosa Intestinal , Funcion de la Barrera Intestinal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Sulfatiazol
16.
Sci Rep ; 14(1): 22524, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341932

RESUMEN

Rayleigh waves are crucial in earthquake engineering due to their significant contribution to structural damage. This study aims to accurately synthesize Rayleigh wave fields in both uniform elastic half-spaces and horizontally layered elastic half-spaces. To achieve this, we developed a self-programmed FORTRAN program utilizing the thin layer stiffness matrix method. The accuracy of the synthesized wave fields was validated through numerical examples, demonstrating the program's reliability for both homogeneous and layered half-space scenarios. A comprehensive analysis of Rayleigh wave propagation characteristics was conducted, including elliptical particle motion, depth-dependent decay, and energy concentration near the surface. The computational efficiency of the self-programmed FORTRAN program was also verified. This research contributes to a deeper understanding of Rayleigh wave behavior and lays the foundation for further studies on soil-structure interaction under Rayleigh wave excitation, ultimately improving the safety and resilience of structures in seismic-prone regions.

17.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931421

RESUMEN

Nanoscale ultrasound contrast agents have attracted considerable interest in the medical imaging field for their ability to penetrate tumor vasculature and enable targeted imaging of cancer cells by attaching to tumor-specific ligands. Despite their potential, traditional chemically synthesized contrast agents face challenges related to complex synthesis, poor biocompatibility, and inconsistent imaging due to non-uniform particle sizes. To address these limitations, bio-synthesized nanoscale ultrasound contrast agents have been proposed as a viable alternative, offering advantages such as enhanced biocompatibility, consistent particle size for reliable imaging, and the potential for precise functionalization to improve tumor targeting. In this study, we successfully isolated cylindrical gas vesicles (GVs) from Serratia. 39006 and subsequently introduced the GVs-encoding gene cluster into Escherichia coli using genetic engineering techniques. We then characterized the contrast imaging properties of two kinds of purified GVs, using in vitro and in vivo methods. Our results demonstrated that naturally isolated GVs could produce stable ultrasound contrast signals in murine livers and tumors using clinical diagnostic ultrasound equipment. Additionally, heterologously expressed GVs from gene-engineered bacteria also exhibited good ultrasound contrast performance. Thus, our study presents favorable support for the application of genetic engineering techniques in the modification of gas vesicles for future biomedical practice.

18.
J Trace Elem Med Biol ; 82: 127357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103517

RESUMEN

BACKGROUND: In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS: The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS: The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION: The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.


Asunto(s)
Antineoplásicos , Bacillus coagulans , Neoplasias de la Mama , Nanopartículas , Selenio , Humanos , Femenino , Selenio/farmacología , Selenio/química , Caspasa 3 , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Espectroscopía Infrarroja por Transformada de Fourier , Factor A de Crecimiento Endotelial Vascular , Proteína X Asociada a bcl-2 , Nanopartículas/química , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-38573532

RESUMEN

The microbial desalination cell (MDC) is a bio-electrochemical system that exhibits the ability to oxidize organic compounds, produce energy, and decrease the saline concentrations within the desalination chamber. The selective removal of ions from the desalination chamber is significantly influenced by the anion and cation exchange membranes. In this study, a three-chamber microbial desalination cell was developed to treat seawater using a synthesize Fe3O4 magnetite nanoparticle (MNP)-modified anode. The impact of different performance parameters, such as temperature, pH, and concentrations of NPs, has been investigated in order to assess the performance of three-chamber MDCs in terms of energy recovery and salt removal. The evaluation criteria of the system included multiple factors such as chemical oxygen demand (COD), Coulombic efficiency (CE), desalination efficiency, as well as system aspects including voltage generation and power density. The highest COD% removal efficiency was 74% at 37 °C, pH = 7, and 30 g/L salt concentration with an optimized NPs concentration of 2.0 mg/cm2 impregnated on anode. The maximum Coulombic efficiency was 10.3% with the maximum power density of 4.3 W/m3. The effect of the nanoparticle concentration impregnated on the anode was clarified by the primary factor of analysis. This research has revealed consistent patterns in the enhancement of voltage generation, COD, and Coulombic efficiencies when incorporating higher concentrations of nanoparticles on the anode at a certain point.

20.
J Marital Fam Ther ; 50(1): 71-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37746922

RESUMEN

This study aims to conduct a systematic review and synthesis on the treatment of sexual violence victimization by an intimate partner evaluating specifically the impact of treatment on mental health outcomes of female sexual intimate partner violence (IPV) survivors. We followed the Cochrane Handbook for Systemic Reviews of Interventions guidelines for the process of conducting systematic reviews. We were unable to conduct meta-analyses due to the substantial heterogeneity of the interventions for IPV. A qualitative summary of 6 controlled studies identified no benefit to the treatment of sexual coercion, posttraumatic stress disorder, depression, or anxiety for female sexual IPV survivors. However, we are limited by a paucity of data for each outcome on this subject. In conclusion, sexual coercion is a complex issue that has adverse effects on mental health and the well-being of the survivors. More research is needed that investigates what kind of interventions are effective for this specific population.


Asunto(s)
Víctimas de Crimen , Violencia de Pareja , Delitos Sexuales , Trastornos por Estrés Postraumático , Humanos , Femenino , Delitos Sexuales/psicología , Violencia de Pareja/psicología , Trastornos por Estrés Postraumático/psicología , Ansiedad , Víctimas de Crimen/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA