Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 58(31): 14022-14033, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39052879

RESUMEN

Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.


Asunto(s)
Filtración , Membranas Artificiales , Nylons , Contaminantes Químicos del Agua , Purificación del Agua , Nylons/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Nanocompuestos/química
2.
J Colloid Interface Sci ; 662: 545-554, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364479

RESUMEN

The desalination performance of thin film nanocomposite (TFN) membranes is significantly influenced by the nature of nanofillers and the structure of the polyamide (PA) layer. Herein, a micelles regulated interfacial polymerization (MRIP) strategy is reported for the preparation of TFN membranes with enhanced nanofiltration (NF) performance. Specially, stable and ultrafine micelles, synthesized from the poly(ethylene oxide)-b-poly(4-vinyl pyridine)-b-polystyrene (PEO-PVP-PS) triblock copolymers, were utilized as regulators in the aqueous phase during the interfacial polymerization (IP) process. TFN membranes were fabricated with varying concentrations of micelles to improve their properties and performances. The structure of the PA layer was further regulated by modulating the content of trimesoyl chloride (TMC), which significantly enhances the performance of the TFN membrane with micelles. Attributable to the homogeneously dispersed micelles and the modified PA layer, the optimized membrane denoted as TFN-2-0.3 exhibits an improved separation performance of 20.7 L m-2h-1 bar-1 and 99.3 % Na2SO4 rejection, demonstrating nearly twice the permeance and 2.7 % higher rejection than that of the original control membrane, respectively. The mechanism of this MRIP strategy was investigated through the diffusion experiments of piperazine (PIP) and interfacial tension tests. The incorporated micelles effectively lower the interfacial tension, promote the diffusion of PIP and accelerate the IP reaction, resulting in a denser and thinner PA layer. Collectively, these findings demonstrate that TFN membranes with micelles exhibit increased roughness, enhanced hydrophilicity, superior rejection to divalent salts, and better acid-base resistance, highlighting their potential applications in the design of TFN membranes.

3.
Chemosphere ; 353: 141108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423147

RESUMEN

Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Contaminantes Ambientales , Fenoles , Ósmosis , Nylons/química , Cafeína , Agua/química
4.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668225

RESUMEN

Drinking water defluoridation has attracted significant attention in the scientific community, from which membrane technology, by exploring thin film nanocomposite (TFN) membranes, has demonstrated a great potential for treating fluoride-contaminated water. This study investigates the development of a TFN membrane by integrating titanium oxide nanosheets (TiO2 NSs) into the polyamide (PA) layer using interfacial polymerization. The characterization results suggest that successfully incorporating TiO2 NSs into the PA layer of the TFN membrane led to a surface with a high negative charge, hydrophilic properties, and a smooth surface at the nanoscale. The TFN membrane, containing 80 ppm of TiO2 NSs, demonstrated a notably high fluoride rejection rate of 98%. The Donnan-steric-pore-model-dielectric-exclusion model was employed to analyze the effect of embedding TiO2 NSs into the PA layer of TFN on membrane properties, including charge density (Xd), the pore radius (rp), and pore dielectric constant (εp). The results indicated that embedding TiO2 NSs increased Xd and decreased the εp by less than the TFC membrane without significantly affecting the rp. The resulting TFN membrane demonstrates promising potential for application in water treatment systems, providing an effective and sustainable solution for fluoride remediation in drinking water.

5.
Water Res ; 252: 121251, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324983

RESUMEN

Nanofiltration (NF) membranes play a pivotal role in water treatment; however, the persistent challenge of membrane fouling hampers their stable application. This study introduces a novel approach to address this issue through the creation of a poly(3,4-ethylenedioxythiophene) (PEDOT)-based conductive membrane, achieved by synergistically coupling interfacial polymerization (IP) with in situ self-polymerization of EDOT. During the IP reaction, the concurrent generation of HCl triggers the protonation of EDOT, activating its self-polymerization into PEDOT. This interwoven structure integrates with the polyamide network to establish a stable selective layer, yielding a remarkable 90 % increase in permeability to 20.4 L m-2 h-1 bar-1. Leveraging the conductivity conferred by PEDOT doping, an electro-assisted cleaning strategy is devised, rapidly restoring the flux to 98.3 % within 5 min, outperforming the 30-minute pure water cleaning approach. Through simulations in an 8040 spiral-wound module and the utilization of the permeated salt solution for cleaning, the electro-assisted cleaning strategy emerges as an eco-friendly solution, significantly reducing water consumption and incurring only a marginal electricity cost of 0.055 $ per day. This work presents an innovative avenue for constructing conductive membranes and introduces an efficient and cost-effective electro-assisted cleaning strategy to effectively combat membrane fouling.


Asunto(s)
Membranas Artificiales , Compuestos Orgánicos , Polimerizacion , Permeabilidad , Conductividad Eléctrica
6.
Sci Total Environ ; 925: 171727, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492592

RESUMEN

Membrane separation technology is widely recognized as an effective method for removing perfluoroalkyl substances (PFASs) in water treatment. ZIF-L, a metal-organic framework (MOF) family characterized by its mat-like cavities and leaf-like morphology, has garnered considerable interest and has been extensively employed in fabricating thin-film nanocomposite (TFN) membranes. In this study, a robust, high-performance TFN membrane to remove PFASs in a nanofiltration (NF) process was created through an interfacial polymerization approach on the surface of polysulfone (PSF), incorporating ZIF-L within the selective layer. The TFN membrane modified by adding 5 wt% ZIF-L (relative to the weight of ethylene imine polymer (PEI)) exhibits 2.3 times higher water flux (up to 47.56 L·m-2·h-1·bar-1) than the pristine thin film composite membrane (20.46 L·m-2·h-1·bar-1), and the rejection for typical PFASs were above 95 % (98.47 % for perfluorooctanesulfonic acid (PFOS) and 95.85 % for perfluorooctanoic acid (PFOA)). The effectiveness of the ZIF-L/PEI TFN membrane in retaining representative PFASs was examined under various conditions, including different pressures, feed concentrations, aqueous environments, and salt ions. Notably, the experiments demonstrated that even after contamination with humic acid (HA), >88 % of the water flux could be restored by washing. Additionally, density functional theory (DFT) calculations were employed to predict the distinct intermolecular interactions between PFASs and ZIF-L as well as PEI. These calculations provide additional insights into the interception mechanism of TFN membranes towards PFASs. Based on this study, TFN membranes incorporating MOF as nanofillers show great potential as an effective method for purifying PFASs from aqueous environments and possess superior environmental sustainability and cost-effectiveness.

7.
Chemosphere ; 360: 142439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797201

RESUMEN

This work proposes an innovative approach for the membrane separation of spent and unspent H2S scavengers (SUS) derived from the application of MEA-triazine in offshore oil and gas production. Modified nanofiltration membranes were fabricated by incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) into a thin film composite (TFC) to obtain a thin film nanocomposite (TFN) with enhanced permeability. In addition, various immobilization strategies for GO were investigated. The performance of the membranes and the effect of the GO loading were evaluated in terms of permeability, fouling propensity, and rejection of key components of the SUS, i.e., MEA-triazine (unspent scavenger), dithiazine (spent scavenger), and monoethanolamine, operating on a sample of SUS wastewater obtained from an offshore oil and gas platform. Various characterization techniques, such as contact angle, FTIR, XRD, SEM, TGA, and AFM, were employed to evaluate the structure, composition, and hydrophilicity of the membrane. The results show a remarkable increase in permeability (from 0.22 Lm-2 h-1 bar-1 for the TFC to 5.8 Lm-2 h-1 bar-1 for the TFN membranes), due to the enhanced hydrophilicity from GO incorporation. The strong interfacial interaction between GO and PVA within the TFN membrane results in negligible nanofiller leaching. The incorporation of GO moderately increases the rejection of the unspent scavenger (63%-73%, 62%-79%, 62%-80%, and 68%-76%), while drastically increasing the rejection of the spent scavenger, which is approximately null for the TFC membrane without GO and increases up to 58% in the TFN membrane with GO. Therefore, while the proposed membranes cannot be used for the selective separation of the unspent form the spent scavenger, they can achieve substantial recovery of all the key components contained in the SUS to avoid their discharge into the sea.


Asunto(s)
Grafito , Membranas Artificiales , Triazinas , Grafito/química , Triazinas/química , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/aislamiento & purificación , Permeabilidad , Nanocompuestos/química , Alcohol Polivinílico/química , Filtración/métodos , Aguas Residuales/química , Interacciones Hidrofóbicas e Hidrofílicas
8.
ACS Appl Mater Interfaces ; 16(3): 4024-4034, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214452

RESUMEN

Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.

9.
Membranes (Basel) ; 14(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248697

RESUMEN

Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water. Furthermore, the hydropathic properties of the membranes can be well controlled by adjusting the content of m-ZIF-8 and m-HNTs. A series of modified m-ZIF-8/m-HNT/PAN membranes were prepared to modulate the dye/salt separation performance of TFN membranes. The experimental results showed that our m-ZIF-8/m-HNT/PAN membranes can elevate the water flux significantly up to 42.6 L m-2 h-1 MPa-1, together with a high rejection of Reactive Red 49 (more than 80%). In particular, the optimized NFM-7.5 membrane that contained 7.5 mg of HNTs and 2.5 mg of ZIF-8 showed a 97.1% rejection of Reactive Red 49 and 21.3% retention of NaCl.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA