Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Hazard Mater ; 394: 122477, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32240897

RESUMEN

Semiconductor quantum dots (QDs) are nanocrystals used in diverse optoelectronics. At the end of their useful life they are likely to end up in landfills, where they could be mobilzed by infiltrating rain water. In this work, spectroscopic and light scattering techniques were employed to investigate the environmental fate of QDs exposed to leachates from Austrian landfill sites containing municipal solid and bulky wastes. Brij-58-coated CdSe QDs, a model for surfactant stabilized hydrophobic nanoparticles, primarily sedimented before being degraded on a slower timescale in the course of 6 months. In contrast, N-acetyl-l-cystein-coated CdTe QDs, which represent electrostatically stabilized nanoparticles with a small covalently linked stabilizing molecule, mainly underwent a degradation mechanism that was accelerated by temperature. 71-95 % of this QD type was still dispersed in all leachates after 6 months at low temperature. Leachate temperature and composition, such as the DOC, as well as the used particle coating determined the mechanistic route of clearance of sedimentation versus degradation. Our study shows, that mechanistic investigations are necessary to determine the persistence of nanoparticles depending on their coatings in waste matrices which can be further used to assess hazardous risks of such nanowastes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA