Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642892

RESUMEN

Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.


Asunto(s)
Pollos , Canal Catiónico TRPA1 , Zinc , Zinc/metabolismo , Zinc/química , Humanos , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/química , Animales , Células HEK293 , Dominios Proteicos , Especificidad de la Especie
2.
J Biol Chem ; 300(8): 107574, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009345

RESUMEN

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as a homotetramer. We investigated whether three disease-associated mutations (F629S, C632R, or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wild-type (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15%) and R638C (∼30%). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.


Asunto(s)
Mutación Missense , Canales Catiónicos TRPP , Xenopus laevis , Animales , Humanos , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/química , Sodio/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Oocitos/metabolismo
3.
J Biol Chem ; 299(6): 104807, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172730

RESUMEN

Here, we report a bioluminescence resonance energy transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human transient receptor potential mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically relevant environment of lysosomes.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Canales de Potencial de Receptor Transitorio , Humanos , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Ligandos , Lisosomas/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
4.
J Biol Chem ; 299(5): 104674, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028763

RESUMEN

Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.


Asunto(s)
Mutación con Ganancia de Función , Mutación Puntual , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Humanos , Microscopía por Crioelectrón , Oocitos/metabolismo , Mutación Puntual/genética , Riñón Poliquístico Autosómico Dominante/genética , Relación Estructura-Actividad , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Xenopus laevis
5.
BMC Genomics ; 25(1): 72, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233779

RESUMEN

BACKGROUND: Temperature is an important environment factor that is critical to the survival and growth of crustaceans. However, the mechanisms by which crustaceans detect changes in temperature are still unclear. The transient receptor potential (TRP) channels are non-selective cation channels well known for properties in temperature sensation. However, comprehensive understandings on TRP channels as well as their temperature sensing functions are still lacking in crustaceans. RESULTS: In this study, a total of 26 TRP genes were identified in the swimming crab, Portunus trituberculatus, which can be classified into TRPA, TRPC, TRPP, TRPM, TRPML, TRPN and TRPV. Tissue expression analysis revealed a wide distribution of these TRP genes in P. trituberculatus, and antennules, neural tissues, and ovaries were the most commonly expressed tissues. To investigate the responsiveness of TRP genes to the temperature change, 18 TRPs were selected to detect their expression after high and low temperature stress. The results showed that 12 TRPs showed induced gene expression in both high and low temperature groups, while 3 were down-regulated in the low temperature group, and 3 showed no change in expression in either group. CONCLUSIONS: This study characterized the TRP family genes in P. trituberculatus, and explored their involvement in response to temperature stress. Our results will enhance overall understanding of crustacean TRP channels and their possible functions.


Asunto(s)
Braquiuros , Canales de Potencial de Receptor Transitorio , Animales , Canales de Potencial de Receptor Transitorio/genética , Braquiuros/genética , Temperatura , Natación
6.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G176-G186, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084411

RESUMEN

Abdominal pain is a cardinal symptom of inflammatory bowel disease (IBD). Transient receptor potential (TRP) channels contribute to abdominal pain in preclinical models of IBD, and TRP melastatin 3 (TRPM3) has recently been implicated in inflammatory bladder and joint pain in rodents. We hypothesized that TRPM3 is involved in colonic sensation and is sensitized during colitis. We used immunohistochemistry, ratiometric Ca2+ imaging, and colonic afferent nerve recordings in mice to evaluate TRPM3 protein expression in colon-projecting dorsal root ganglion (DRG) neurons, as well as functional activity in DRG neurons and colonic afferent nerves. Colitis was induced using dextran sulfate sodium (DSS) in drinking water. TRPM3 protein expression was observed in 76% of colon-projecting DRG neurons and was often colocalized with calcitonin gene-related peptide. The magnitudes of intracellular Ca2+ transients in DRG neurons in response to the TRPM3 agonists CIM-0216 and pregnenolone sulfate sodium were significantly greater in neurons from mice with colitis compared with controls. In addition, the percentage of DRG neurons from mice with colitis that responded to CIM-0216 was significantly increased. CIM-0216 also increased the firing rate of colonic afferent nerves from control and mice with colitis. The TRPM3 inhibitor isosakuranetin inhibited the mechanosensitive response to distension of wide dynamic range afferent nerve units from mice with colitis but had no effect in control mice. Thus, TRPM3 contributes to colonic sensory transduction and may be a potential target for treating pain in IBD.NEW & NOTEWORTHY This is the first study to characterize TRPM3 protein expression and function in colon-projecting DRG neurons. A TRPM3 agonist excited DRG neurons and colonic afferent nerves from healthy mice. TRPM3 agonist responses in DRG neurons were elevated during colitis. Inhibiting TRPM3 reduced the firing of wide dynamic range afferent nerves from mice with colitis but had no effect in control mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Canales Catiónicos TRPM , Ratones , Animales , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas/metabolismo , Ganglios Espinales , Colon/inervación , Dolor Abdominal , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
7.
Respir Res ; 25(1): 188, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678280

RESUMEN

Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.


Asunto(s)
Adenosina Trifosfato , Bronquios , Células Epiteliales , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Adenosina Trifosfato/metabolismo , Bronquios/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Estrés Mecánico , Masculino , Mecanotransducción Celular/fisiología
8.
Int Ophthalmol ; 44(1): 63, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347388

RESUMEN

PURPOSE: Pterygium is a hyaline degenerative disease of the conjunctiva characterized by the progression of fibrovascular connective tissue from the bulbar conjunctiva to the cornea. The mechanism of pterygium formation is still not fully understood. Transient receptor potential (TRP) channels are a group of ion channels with distinct characteristics. Recent indications suggest TRP channels may play a significant regulatory role in pterygium development, but previous studies have mainly focused on in silico analysis. Accordingly, in the present study, we aimed to decipher the expression signatures and role of TRP channels in pterygium development. METHODS: The study encompassed a cohort of 45 patients matched for age and gender distribution, comprising 30 individuals with primary pterygium (PP) and 15 individuals with recurrent pterygium (RP). The control group consisted of unaffected conjunctival tissue obtained from the same set of patients. High-throughput screening of differentially expressed TRP channels in pterygium tissues was achieved with the help of Fluidigm 96.96 Dynamic Array Expression Chip and reactions were held in BioMark™ HD System Real-Time PCR platform. RESULTS: Statistically significant increases were found in the expression of 21 genes, mainly TRPA1 (p = 0.021), TRPC2 (p = 0.001), and TRPM8 (p = 0.003), in patients with PP, and in TRPC5 (p = 0.05), TRPM2 (p = 0.029), TRPM4 (p = 0.03), TRPM6 (p = 0.045), TRPM8 (p = 0.038), TRPV1 (p = 0.01) and TRPV4 (p = 0.025) genes in RP tissues. CONCLUSION: Collectively, TRP channel proteins appear to play pivotal roles in both the development and progression of pterygium, making them promising candidates for future therapeutic interventions in patients afflicted by this condition.


Asunto(s)
Conjuntiva/anomalías , Pterigion , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Pterigion/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Conjuntiva/metabolismo
9.
J Biol Chem ; 298(9): 102271, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850302

RESUMEN

Animals detect heat using thermosensitive transient receptor potential (TRP) channels. In insects, these include TRP ankyrin 1 (TRPA1), which in mosquitoes is crucial for noxious heat avoidance and thus is an appealing pest control target. However, the molecular basis for heat-evoked activation has not been fully elucidated, impeding both studies of the molecular evolution of temperature sensitivity and rational design of inhibitors. In TRPA1 and other thermosensitive TRPs, the N-terminal cytoplasmic ankyrin repeat (AR) domain has been suggested to participate in heat-evoked activation, but the lack of a structure containing the full AR domain has hindered our mechanistic understanding of its role. Here, we focused on elucidating the structural basis of apparent temperature threshold determination by taking advantage of two closely related mosquito TRPA1s from Aedes aegypti and Culex pipiens pallens with 86.9% protein sequence identity but a 10 °C difference in apparent temperature threshold. We identified two positions in the N-terminal cytoplasmic AR domain of these proteins, E417 (A. aegypti)/Q414 (C. pipiens) and R459 (A. aegypti)/Q456 (C. pipiens), at which a single exchange of amino acid identity was sufficient to change apparent thresholds by 5 to 7 °C. We further found that the role of these positions is conserved in TRPA1 of a third related species, Anopheles stephensi. Our results suggest a structural basis for temperature threshold determination as well as for the evolutionary adaptation of mosquito TRPA1 to the wide range of climates inhabited by mosquitoes.


Asunto(s)
Aedes , Repetición de Anquirina , Culex , Calor , Canal Catiónico TRPA1 , Aedes/genética , Aedes/fisiología , Animales , Repetición de Anquirina/genética , Culex/genética , Culex/fisiología , Dominios Proteicos , Canal Catiónico TRPA1/química , Canal Catiónico TRPA1/genética
10.
J Biol Chem ; 298(6): 102035, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35588786

RESUMEN

Ion channels are integral membrane proteins whose gating has been increasingly shown to depend on the presence of the low-abundance membrane phospholipid, phosphatidylinositol (4,5) bisphosphate. The expression and function of ion channels is tightly regulated via protein phosphorylation by specific kinases, including various PKC isoforms. Several channels have further been shown to be regulated by PKC through altered surface expression, probability of channel opening, shifts in voltage dependence of their activation, or changes in inactivation or desensitization. In this review, we survey the impact of phosphorylation of various ion channels by PKC isoforms and examine the dependence of phosphorylated ion channels on phosphatidylinositol (4,5) bisphosphate as a mechanistic endpoint to control channel gating.


Asunto(s)
Canales Iónicos , Fosfatidilinositol 4,5-Difosfato , Proteína Quinasa C , Canales Iónicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo
11.
Mol Microbiol ; 117(2): 480-492, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34897856

RESUMEN

The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.


Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Piroptosis , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
12.
Cell Tissue Res ; 391(2): 287-303, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36513829

RESUMEN

Transient receptor potential vanilloid type 2 (TRPV2) and type 1 (TRPV1) are originally identified as heat-sensitive TRP channels. We compared the expression patterns of TRPV2 and TRPV1 in the rat distal colon and extrinsic primary afferent neurons, and investigated their roles in visceral hypersensitivity in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rats. Both TRPV2 and TRPV1 expressions in the colon, dorsal root ganglion (DRG), and nodose ganglion (NG) were significantly upregulated in the TNBS-induced colitis model. TRPV2 cell bodies co-localized with the intrinsic primary afferent marker NeuN and the inhibitory motor neuronal marker nNOS in the myenteric plexus. TRPV2 expressions were further detected in the resident macrophage marker ED2 in the mucosa. In contrast, no TRPV1-expressing cell bodies were detected in the myenteric plexus. Both TRPV2- and TRPV1-positive cell bodies in the DRG and NG were double-labeled with the neuronal retrograde tracer fluorescent fluorogold. Large- and medium-sized TRPV2-positive neurons were labeled with the A-fiber marker NF200, calcitonin gene-related peptide (CGRP), and substance P (SP) in the DRG while small-sized TRPV1-positive neurons were labeled with the C-fiber markers IB4, CGRP, and SP. TRPV2- and TRPV1-positive NG neurons were labeled with NF200 and IB4. TNBS treatment increased p-ERK1/2-positive cells in TRPV2 and TRPV1 neurons but did not affect the TRPV2 and TRPV1 subpopulations in the DRG and NG. Both TRPV2 and TRPV1 antagonists significantly alleviated visceral hypersensitivity in TNBS-induced colitis model rats. These findings suggest that intrinsic/extrinsic TRPV2- and extrinsic TRPV1-neurons contribute to visceral hypersensitivity in an experimental colitis model.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Colitis , Ratas , Animales , Ácido Trinitrobencenosulfónico/efectos adversos , Péptido Relacionado con Gen de Calcitonina/efectos adversos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Colitis/inducido químicamente , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo , Ganglios Espinales
13.
Microvasc Res ; 145: 104443, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208670

RESUMEN

OBJECTIVE: To investigate the nitric oxide synthase (NOS) and reactive oxygen species (ROS) contributions of the cutaneous vasodilator response to transient receptor potential ankyrin-1 channel (TRPA1) activation in young and older adults. MATERIALS AND METHODS: In sixteen young (20 ± 2 years, 8 females) and sixteen older adults (61 ± 5 years, 8 females), cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites continuously perfused via microdialysis with: 1) vehicle solution (Control, 2 % dimethyl sulfoxide, 2 % Ringer, 96 % propylene glycol), 2) 10 mM Ascorbate (non-specific ROS inhibitor), 3) 10 mM L-NAME (non-specific NOS inhibitor), or 4) Ascorbate+L-NAME. The TRPA1 agonist cinnamaldehyde was co-administered at all sites [0 % (baseline), 2.9 %, 8.8 %, 26.4 %; ≥ 30 min per dose]. RESULTS: %CVCmax was not different between groups for Control, L-NAME, and Ascorbate (all p > 0.05). However, there were significant main dose effects for each site wherein %CVCmax was greater than baseline from 2.9 % to 26.4 % cinnamaldehyde for Control and Ascorbate, and at 26.4 % cinnamaldehyde for L-NAME and Ascorbate+L-NAME (all p < 0.05). For Ascorbate+L-NAME, there was a significant main group effect, wherein perfusion was 6 %CVCmax [95% CI: 2, 11, p < 0.05] greater in the older compared to the young group across all cinnamaldehyde doses. There was a significant main site effect for area under the curve wherein L-NAME and Ascorbate+L-NAME were lower than Control and Ascorbate across groups (all p < 0.05). CONCLUSION: The NOS-dependent cutaneous vasodilator response to TRPA1 activation is maintained in older adults, with no detectable contribution of ascorbate-sensitive ROS in either age group.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Vasodilatación , Anciano , Femenino , Humanos , Ácido Ascórbico/farmacología , Microdiálisis , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa , Especies Reactivas de Oxígeno , Flujo Sanguíneo Regional , Piel/irrigación sanguínea , Canales de Potencial de Receptor Transitorio/farmacología , Vasodilatadores/farmacología , Masculino , Adulto Joven , Persona de Mediana Edad
14.
FASEB J ; 36(5): e22306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385164

RESUMEN

As aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation. We verified TRPV4 functionality in VICs using live calcium imaging during application of small molecule modulators of TRPV4 activity. We designed hydrogel biomaterials that mimic mechanical features of healthy or diseased valve tissue microenvironments, respectively, to investigate the role of TRPV4 in myofibroblast activation and proliferation. Our results show that TRPV4 regulates VIC proliferation in a microenvironment stiffness-independent manner. While there was a trend toward inhibiting myofibroblast activation on soft microenvironments during TRPV4 inhibition, we observed near complete deactivation of myofibroblasts on stiff microenvironments. We further identified Yes-activated protein (YAP) as a downstream target for TRPV4 activity on stiff microenvironments. Mechanosensitive TRPV4 channels regulate VIC myofibroblast activation, whereas proliferation regulation is independent of the microenvironmental stiffness. Collectively, the data suggests differential regulation of stiffness-induced proliferation and myofibroblast activation. Our data further suggest a regulatory role for TRPV4 regarding YAP nuclear localization. TRPV4 is an important regulator for VIC myofibroblast activation, which is linked to the initiation of valve fibrosis. Although more validation studies are necessary, we suggest TRPV4 as a promising pharmaceutical target to slow aortic valve stenosis progression.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Miofibroblastos , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/metabolismo , Proliferación Celular , Células Cultivadas , Hidrogeles , Miofibroblastos/metabolismo , Porcinos , Canales Catiónicos TRPV/metabolismo
15.
Inflamm Res ; 72(3): 589-602, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36692516

RESUMEN

OBJECTIVES: We aimed at identifying the role of transient receptor potential (TRP) channels in pterygium. METHODS: Based on microarray data GSE83627 and GSE2513, differentially expressed genes (DEGs) were screened and 20 hub genes were selected. After gene correlation analysis, 5 TRP-related genes were obtained and functional analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Multifactor regulatory network including mRNA, microRNAs (miRNAs) and transcription factors (TFs) was constructed. The 5 gene TRP signature for pterygium was validated by multiple machine learning (ML) programs including support vector classifiers (SVC), random forest (RF), and k-nearest neighbors (KNN). Additionally, we outlined the immune microenvironment and analyzed the candidate drugs. Finally, in vitro experiments were performed using human conjunctival epithelial cells (CjECs) to confirm the bioinformatics results. RESULTS: Five TRP-related genes (MCOLN1, MCOLN3, TRPM3, TRPM6, and TRPM8) were validated by ML algorithms. Functional analyses revealed the participation of lysosome and TRP-regulated inflammatory pathways. A comprehensive immune infiltration landscape and TFs-miRNAs-mRNAs network was studied, which indicated several therapeutic targets (LEF1 and hsa-miR-455-3p). Through correlation analysis, MCOLN3 was proposed as the most promising immune-related biomarker. In vitro experiments further verified the reliability of our in silico results and demonstrated that the 5 TRP-related genes could influence the proliferation and proinflammatory signaling in conjunctival tissue contributing to the pathogenesis of pterygium. CONCLUSIONS: Our study suggested that TRP channels played an essential role in the pathogenesis of pterygium. The identified pivotal biomarkers (especially MCOLN3) and pathways provide novel directions for future mechanistic and therapeutic studies for pterygium.


Asunto(s)
MicroARNs , Pterigion , Canales de Potencial de Receptor Transitorio , Humanos , Pterigion/genética , Canales de Potencial de Receptor Transitorio/genética , Reproducibilidad de los Resultados , Conjuntiva , MicroARNs/genética
16.
Dysphagia ; 38(6): 1449-1466, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37145201

RESUMEN

Impaired pharyngo-laryngeal sensory function is a critical mechanism for oropharyngeal dysphagia (OD). Discovery of the TRP family in sensory nerves opens a window for new active treatments for OD. To summarize our experience of the action mechanism and therapeutic effects of pharyngeal sensory stimulation by TRPV1, TRPA1 and TRPM8 agonists in older patients with OD. Summary of our studies on location and expression of TRP in the human oropharynx and larynx, and clinical trials with acute and after 2 weeks of treatment with TRP agonists in older patients with OD. (1) TRP receptors are widely expressed in the human oropharynx and larynx: TRPV1 was localized in epithelial cells and TRPV1, TRPA1 and TRPM8 in sensory fibers mainly below the basal lamina. (2) Older people present a decline in pharyngeal sensory function, more severe in patients with OD associated with delayed swallow response, impaired airway protection and reduced spontaneous swallowing frequency. (3) Acute stimulation with TRP agonists improved the biomechanics and neurophysiology of swallowing in older patients with OD TRPV1 = TRPA1 > TRPM8. (4) After 2 weeks of treatment, TRPV1 agonists induced cortical changes that correlated with improvements in swallowing biomechanics. TRP agonists are well tolerated and do not induce any major adverse events. TRP receptors are widely expressed in the human oropharynx and larynx with specific patterns. Acute oropharyngeal sensory stimulation with TRP agonists improved neurophysiology, biomechanics of swallow response, and safety of swallowing. Subacute stimulation promotes brain plasticity further improving swallow function in older people with OD.


Asunto(s)
Trastornos de Deglución , Humanos , Anciano , Faringe , Deglución/fisiología , Orofaringe , Encéfalo
17.
Phytother Res ; 37(7): 2759-2770, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36762415

RESUMEN

Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.


Asunto(s)
Apetito , Canales de Potencial de Receptor Transitorio , Ratones , Animales , Eugenol/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Transducción de Señal
18.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175602

RESUMEN

Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.


Asunto(s)
Trastornos Migrañosos , Canales de Potencial de Receptor Transitorio , Humanos , Nociceptores/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Ganglio del Trigémino/metabolismo , Dolor/metabolismo
19.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902145

RESUMEN

Pharmacomodulation of membrane channels is an essential topic in the study of physiological conditions and disease status. Transient receptor potential (TRP) channels are one such family of nonselective cation channels that have an important influence. In mammals, TRP channels consist of seven subfamilies with a total of twenty-eight members. Evidence shows that TRP channels mediate cation transduction in neuronal signaling, but the full implication and potential therapeutic applications of this are not entirely clear. In this review, we aim to highlight several TRP channels which have been shown to mediate pain sensation, neuropsychiatric disorders, and epilepsy. Recent findings suggest that TRPM (melastatin), TRPV (vanilloid), and TRPC (canonical) are of particular relevance to these phenomena. The research reviewed in this paper validates these TRP channels as potential targets of future clinical treatment and offers patients hope for more effective care.


Asunto(s)
Epilepsia , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Animales , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Dolor , Transducción de Señal , Cationes , Mamíferos/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPM/metabolismo
20.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686387

RESUMEN

Cerebrospinal fluid contacting neurons (CSF-cNs) are a specific type of neurons located around the ventricles in the brain and the central canal in the spinal cord and have been demonstrated to be intrinsic sensory neurons in the central nervous system. One of the important channels responsible for the sensory function is the polycystic kidney disease 2-like 1 (PKD2L1) channel. Most of the studies concerning the distribution and function of the PKD2L1-expressing CSF-cNs in the spinal cord have previously been performed in non-mammalian vertebrates. In the present study immunohistochemistry was performed to determine the distribution of PKD2L1-immunoreactive (IR) CSF-cNs in the spinal cords of four mammalian species: mouse, rat, cat, and macaque monkey. Here, we found that PKD2L1-expressing CSF-cNs were present at all levels of the spinal cord in these animal species. Although the distribution pattern was similar across these species, differences existed. Mice and rats presented a clear PKD2L1-IR cell body labeling, whereas in cats and macaques the PKD2L1-IR cell bodies were more weakly labeled. Ectopic PKD2L1-IR neurons away from the ependymal layer were observed in all the animal species although the abundance and the detailed locations varied. The apical dendritic protrusions with ciliated fibers were clearly seen in the lumen of the central canal in all the animal species, but the sizes of protrusion bulbs were different among the species. PKD2L1-IR cell bodies/dendrites were co-expressed with doublecortin, MAP2 (microtubule-associated protein 2), and aromatic L-amino acid decarboxylase, but not with NeuN (neuronal nuclear protein), indicating their immature properties and ability to synthesize monoamine transmitters. In addition, in situ hybridization performed in rats revealed PKD2L1 mRNA expression in the cells around the central canal. Our results indicate that the intrinsic sensory neurons are conserved across non-mammalian and mammalian vertebrates. The similar morphology of the dendritic bulbs with ciliated fibers (probably representing stereocilia and kinocilia) protruding into the central canal across different animal species supports the notion that PKD2L1 is a chemo- and mechanical sensory channel that responds to mechanical stimulations and maintains homeostasis of the spinal cord. However, the differences of PKD2L1 distribution and expression between the species suggest that PKD2L1-expressing neurons may receive and process sensory signals differently in different animal species.


Asunto(s)
Roedores , Médula Espinal , Animales , Gatos , Ratones , Ratas , Sistema Nervioso Central , Neuronas , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA