Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(4): 606-619.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32160524

RESUMEN

Group 2 innate lymphoid cells (ILC2s) regulate immunity, inflammation, and tissue homeostasis. Two distinct subsets of ILC2s have been described: steady-state natural ILC2s and inflammatory ILC2s, which are elicited following helminth infection. However, how tissue-specific cues regulate these two subsets of ILC2s and their effector functions remains elusive. Here, we report that interleukin-33 (IL-33) promotes the generation of inflammatory ILC2s (ILC2INFLAM) via induction of the enzyme tryptophan hydroxylase 1 (Tph1). Tph1 expression was upregulated in ILC2s upon activation with IL-33 or following helminth infection in an IL-33-dependent manner. Conditional deletion of Tph1 in lymphocytes resulted in selective impairment of ILC2INFLAM responses and increased susceptibility to helminth infection. Further, RNA sequencing analysis revealed altered gene expression in Tph1 deficient ILC2s including inducible T cell co-stimulator (Icos). Collectively, these data reveal a previously unrecognized function for IL-33, Tph1, and ICOS in promoting inflammatory ILC2 responses and type 2 immunity at mucosal barriers.


Asunto(s)
Inmunidad Celular , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Interleucina-33/inmunología , Nippostrongylus/inmunología , Infecciones por Strongylida/inmunología , Subgrupos de Linfocitos T/inmunología , Triptófano Hidroxilasa/inmunología , Animales , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Inmunidad Mucosa , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Interleucina-33/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/patogenicidad , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nippostrongylus/crecimiento & desarrollo , Nippostrongylus/patogenicidad , Cultivo Primario de Células , Transducción de Señal , Infecciones por Strongylida/genética , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/patología , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/parasitología , Triptófano Hidroxilasa/genética
2.
Eur J Neurosci ; 60(7): 5658-5670, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39189108

RESUMEN

Fluctuations in estradiol levels at each stage of life in women are considered one of the causes of mental diseases through their effects on the central nervous system. During menopause, a decrease in estradiol levels has been reported to affect the serotonin nervous system and induce depression-like and anxiety symptoms. However, the regulation of brain and behaviour during childhood and adolescence is poorly understood. Moreover, the role of oestrogen receptors α and ß in the regulation of the serotonergic nervous system has been reported, but little is known about the involvement of G protein-coupled receptor 30. Therefore, in this study, we used an ovariectomized childhood mouse model to analyse behaviour and investigate the effects on the serotonin nervous system. We showed that ovariectomy surgery at 4 weeks of age, which is the weaning period, induced a decrease in spontaneous locomotor activity during the active period and a preference for novel mice over familiar mice in the three-chamber social test at 10 weeks of age. In addition, the administration of G-1, a protein-coupled receptor 30 agonist, to ovariectomized mice suppressed spontaneous locomotor activity and the preference for novel mice. Furthermore, we demonstrated that childhood ovariectomy induces increased tryptophan hydroxylase gene expression in the raphe nucleus and increased serotonin release in the amygdaloid nucleus, and administration of G-1 ameliorated these effects. Our study suggests that G protein-coupled receptor 30-mediated regulation of serotonin synthesis is involved in changes in activity and social-cognitive behaviour due to decreased estradiol levels during childhood.


Asunto(s)
Ovariectomía , Receptores Acoplados a Proteínas G , Serotonina , Triptófano Hidroxilasa , Animales , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Conducta Animal/fisiología , Receptores de Estrógenos/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ratones Endogámicos C57BL , Conducta Social , Quinolinas/farmacología , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Locomoción/fisiología , Locomoción/efectos de los fármacos , Actividad Motora/fisiología
3.
Insect Mol Biol ; 33(3): 283-292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411032

RESUMEN

Although the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects. Here, we describe a highly efficient homology-directed genome editing system for B. dorsalis that incorporates coinjection of embryos with Cas9 protein, guide RNA and a short single-stranded oligodeoxynucleotide donor. This one-step procedure generates flies carrying V5 tag (42 bp) in the BdorTRH gene. In insects, as in other invertebrates and in vertebrates, the neuronal tryptophan hydroxylase (TRH) gene encodes the rate-limiting enzyme for serotonin biosynthesis in the central nervous system. Using V5 monoclonal antibody, the distribution of TRH in B. dorsalis at different developmental stages was uncovered. Our results will facilitate the generation of insects carrying precise DNA inserts in endogenous genes and will lay foundation for the investigation of the neural mechanisms underlying the serotonin-mediated behaviour of B. dorsalis.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Tephritidae , Animales , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/crecimiento & desarrollo , Edición Génica/métodos , Técnicas de Sustitución del Gen , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38416162

RESUMEN

Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.


Asunto(s)
Agresión , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Agresión/fisiología , Femenino , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Masculino , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Conducta Animal/fisiología , Técnicas de Inactivación de Genes , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Encéfalo/metabolismo
5.
Acta Pharmacol Sin ; 45(7): 1393-1405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528118

RESUMEN

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.


Asunto(s)
Ansiedad , Núcleo Dorsal del Rafe , Hipocampo , Ratones Noqueados , Receptores de Serotonina 5-HT3 , Serotonina , Triptófano Hidroxilasa , Animales , Núcleo Dorsal del Rafe/metabolismo , Hipocampo/metabolismo , Ansiedad/metabolismo , Serotonina/metabolismo , Ratones , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Receptores de Serotonina 5-HT3/metabolismo , Receptores de Serotonina 5-HT3/genética , Ratones Endogámicos C57BL , Fenotipo , Potenciación a Largo Plazo
6.
Phytopathology ; 114(6): 1401-1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148161

RESUMEN

Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.


Asunto(s)
Oryza , Enfermedades de las Plantas , Interferencia de ARN , Serotonina , Tylenchoidea , Animales , Tylenchoidea/fisiología , Serotonina/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Oryza/parasitología , Oryza/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Interacciones Huésped-Parásitos , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Raíces de Plantas/parasitología , Fluoxetina/farmacología , Transducción de Señal , Conducta Alimentaria/efectos de los fármacos
7.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981704

RESUMEN

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Asunto(s)
Agresión , Encéfalo , Monoaminooxidasa , Triptófano Hidroxilasa , Animales , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Agresión/efectos de los fármacos , Humanos , Serotonina/metabolismo
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732220

RESUMEN

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Asunto(s)
Toma de Decisiones , Serotonina , Triptófano Hidroxilasa , Animales , Ratas , Conducta Animal , Cognición , Técnicas de Silenciamiento del Gen , Hipotálamo/metabolismo , Serotonina/metabolismo , Conducta Social , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética
9.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928178

RESUMEN

Physiology and behavior are structured temporally to anticipate daily cycles of light and dark, ensuring fitness and survival. Neuromodulatory systems in the brain-including those involving serotonin and dopamine-exhibit daily oscillations in neural activity and help shape circadian rhythms. Disrupted neuromodulation can cause circadian abnormalities that are thought to underlie several neuropsychiatric disorders, including bipolar mania and schizophrenia, for which a mechanistic understanding is still lacking. Here, we show that genetically depleting serotonin in Tph2 knockout mice promotes manic-like behaviors and disrupts daily oscillations of the dopamine biosynthetic enzyme tyrosine hydroxylase (TH) in midbrain dopaminergic nuclei. Specifically, while TH mRNA and protein levels in the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) of wild-type mice doubled between the light and dark phase, TH levels were high throughout the day in Tph2 knockout mice, suggesting a hyperdopaminergic state. Analysis of TH expression in striatal terminal fields also showed blunted rhythms. Additionally, we found low abundance and blunted rhythmicity of the neuropeptide cholecystokinin (Cck) in the VTA of knockout mice, a neuropeptide whose downregulation has been implicated in manic-like states in both rodents and humans. Altogether, our results point to a previously unappreciated serotonergic control of circadian dopamine signaling and propose serotonergic dysfunction as an upstream mechanism underlying dopaminergic deregulation and ultimately maladaptive behaviors.


Asunto(s)
Ritmo Circadiano , Dopamina , Ratones Noqueados , Serotonina , Triptófano Hidroxilasa , Tirosina 3-Monooxigenasa , Área Tegmental Ventral , Animales , Serotonina/metabolismo , Ratones , Ritmo Circadiano/fisiología , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Área Tegmental Ventral/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Neuronas Dopaminérgicas/metabolismo , Masculino , Sustancia Negra/metabolismo , Ratones Endogámicos C57BL , Trastorno Bipolar/metabolismo , Trastorno Bipolar/genética
10.
Bull Exp Biol Med ; 176(6): 756-760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38922549

RESUMEN

The enzyme tryptophan hydroxylase 2 (TPH2) catalyzes the hydroxylation of L-tryptophan to L-5-hydroxytryptophan (5-HTP), the first and the key step in 5-HT synthesis in the mammalian brain. Mutations in the human Tph2 gene reducing enzyme activity increase the risk of psychopathology. Pharmacological chaperones are small molecules that can specifically bind to mutant protein molecules, restore their disturbed 3D structure to the native state, and increase their stability and functional activity. The chaperone activity of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is expressed by increasing the in vitro thermal stability of mutant tyrosine hydroxylase and phenylalanine hydroxylase molecules which are similar to TPH2 in their structure and characteristics. The P447R substitution in the mouse TPH2 molecule results in a 2-fold decrease in enzyme activity in their brains. We studied the effect of this mutation on the TPH2 thermal stability, as well as on the ability of BH4 and its 8 structural analogues to increase the thermal stability of the mutant TPH2 from midbrain extracts of BALB/C mice. Temperature stability was studied by the decrease in enzyme activity during its heating for 2 min at increasing temperatures and was evaluated by the T50 value that is the temperature at which the enzyme activity decreased by half. For the mutant TPH2, the T50 value was decreased compared to the wild type enzyme. BH4 and its closest structural analogue, 6-methyl-5,6,7,8-tetrahydropterin, increased the T50 value, i.e., exhibited chaperone activity. Other close BH4 analogs, 6,7-dimethyl-5,6,7,8-tetrahydropterin and folic acid, were not effective. It can be assumed that BH4 can be effective in the treatment of mental disorders caused by mutations in the Tph2 gene.


Asunto(s)
Estabilidad de Enzimas , Triptófano Hidroxilasa , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/química , Animales , Ratones , Humanos , Mutación , Temperatura , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Pterinas/química , Pterinas/metabolismo , Pterinas/farmacología
11.
FASEB J ; 36(4): e22255, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35294080

RESUMEN

In mammals, behavioral activity is regulated both by the circadian system, orchestrated by the suprachiasmatic nucleus (SCN), and by arousal structures, including the serotonergic system. While the SCN is active at the same astronomical time in diurnal and nocturnal species, little data are available concerning the serotonergic (5HT) system in diurnal mammals. In this study, we investigated the functioning of the 5HT system, which is involved both in regulating the sleep/wake cycle and in synchronizing the SCN, in a diurnal rodent, Arvicanthis ansorgei. Using in situ hybridization, we characterized the anatomical extension of the raphe nuclei and we investigated 24 h mRNA levels of the serotonin rate-limiting enzyme, tryptophan hydroxylase 2 (tph2). Under both 12 h:12 h light/dark (LD) and constant darkness (DD) conditions, tph2 mRNA expression varies significantly over 24 h, displaying a bimodal profile with higher values around the (projected) light transitions. Furthermore, we considered several SCN outputs, namely melatonin, corticosterone, and locomotor activity. In both LD and DD, melatonin profiles display peak levels during the biological night. Corticosterone plasma levels show a bimodal rhythmic profile in both conditions, with higher levels preceding the two peaks of Arvicanthis locomotor activity, occurring at dawn and dusk. These data demonstrate that serotonin synthesis in Arvicanthis is rhythmic and reflects its bimodal behavioral phenotype, but differs from what has been previously described in nocturnal species.


Asunto(s)
Melatonina , Serotonina , Animales , Ritmo Circadiano/fisiología , Corticosterona/metabolismo , Melatonina/metabolismo , Murinae/metabolismo , ARN Mensajero/metabolismo , Serotonina/metabolismo , Núcleo Supraquiasmático/fisiología
12.
J Neural Transm (Vienna) ; 130(9): 1113-1132, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542675

RESUMEN

Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Ratones , Ratas , Femenino , Animales , Serotonina/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Agresión/fisiología , Encéfalo/metabolismo , Conducta Social
13.
Behav Brain Funct ; 19(1): 22, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093326

RESUMEN

BACKGROUND: Childhood trauma is one of the most extensively studied and well-supported environmental risk factors for the development of mental health problems. The human tryptophan hydroxylase 2 (TPH2) gene is one of the most promising candidate genes in numerous psychiatric disorders. However, it is now widely acknowledged that neither genetic variation nor environmental exposure alone can fully explain all the phenotypic variance observed in psychiatric disorders. Therefore, it is necessary to consider the interaction between the two factors in psychiatric research. METHODS: We enrolled a sizable nonclinical cohort of 786 young, healthy adults who underwent structural MRI scans and completed genotyping, the Childhood Trauma Questionnaire (CTQ) and behavioural scores. We identified the interaction between childhood trauma and the TPH2 rs7305115 gene polymorphism in the gray matter volume (GMV) of specific brain subregions and the behaviour in our sample using a multiple linear regression framework. We utilized mediation effect analysis to identify environment /gene-brain-behaviour relationships. RESULTS: We found that childhood trauma and TPH2 rs7305115 interacted in both behaviour and the GMV of brain subregions. Our findings indicated that the GMV of the right posterior parietal thalamus served as a significant mediator supporting relationship between childhood trauma (measured by CTQ score) and anxiety scores in our study population, and the process was partly modulated by the TPH2 rs7305115 gene polymorphism. Moreover, we found only a main effect of childhood trauma in the GMV of the right parahippocampal gyrus area, supporting the relationship between childhood trauma and anxiety scores as a significant mediator. CONCLUSIONS: Our findings suggest that early-life trauma may have a specific and long-term structural effect on brain GMV, potentially leading to altered cognitive and emotional processes involving the parahippocampal gyrus and thalamus that may also be modulated by the TPH2 gene polymorphism. This finding highlights the importance of considering genetic factors when examining the impact of early-life experiences on brain structure and function. Gene‒environment studies can be regarded as a powerful objective supplement for targeted therapy, early diagnosis and treatment evaluation in the future.


Asunto(s)
Experiencias Adversas de la Infancia , Sustancia Gris , Adulto , Humanos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Polimorfismo Genético , Triptófano Hidroxilasa/genética , Triptófano Oxigenasa , Niño
14.
Mol Biol Rep ; 50(1): 267-277, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36331742

RESUMEN

Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.


Asunto(s)
Mastocitoma , Mitógenos , Ratones , Animales , Glutamina , ARN Mensajero/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inhibidores Enzimáticos/farmacología , Triptófano Hidroxilasa/genética
15.
Appl Microbiol Biotechnol ; 107(15): 4717-4725, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37326681

RESUMEN

Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano/metabolismo , Hidroxilación , Neurotransmisores
16.
Biochemistry (Mosc) ; 88(3): 291-302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076278

RESUMEN

Tryptophan hydroxylase 2 is a key enzyme in the synthesis of the neurotransmitter serotonin, which plays an important role in the regulation of behavior and various physiological functions. We studied the effect of acute ethanol administration on the expression of the early response c-fos gene and metabolism of serotonin and catecholamines in the brain structures of B6-1473C and B6-1473G congenic mouse strains differing in the single-nucleotide substitution C1473G in the Tph2 gene and activity of the encoded enzyme. Acute alcoholization led to a significant upregulation of the c-fos gene expression in the frontal cortex and striatum of B6-1473G mice and in the hippocampus of B6-1473C mice and caused a decrease in the index of serotonin metabolism in the nucleus accumbens in B6-1473C mice and in the hippocampus and striatum of B6-1473G mice, as well as to the decrease in the norepinephrine level in the hypothalamus of B6-1473C mice. Therefore, the C1473G polymorphism in the Tph2 gene has a significant effect of acute ethanol administration on the c-fos expression pattern and metabolism of biogenic amines in the mouse brain.


Asunto(s)
Etanol , Oxigenasas de Función Mixta , Ratones , Animales , Oxigenasas de Función Mixta/metabolismo , Etanol/farmacología , Serotonina/metabolismo , Genes fos , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Encéfalo/metabolismo , Expresión Génica
17.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834593

RESUMEN

The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.


Asunto(s)
Ciprinodontiformes , Fundulidae , Animales , Masculino , Femenino , Serotonina , Triptófano , Envejecimiento , Encéfalo , Triptófano Hidroxilasa , Monoaminooxidasa
18.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894930

RESUMEN

Tryptophan (Trp) is an essential proteinogenic amino acid and metabolic precursor for several signaling molecules that has been implicated in many physiological and pathological processes. Since the two main branches of Trp metabolism-serotonin biosynthesis and kynurenine pathway-are differently affected by a variety of neurological and neoplastic diseases, selective visualization of these pathways is of high clinical relevance. However, while positron emission tomography (PET) with existing probes can be used for non-invasive assessment of total Trp metabolism, optimal imaging agents for pathway-specific PET imaging are still lacking. In this work, we describe the preparation of two 18F-labeled Trp derivatives, NIn-methyl-6-[18F]fluorotryptophan (NIn-Me-6-[18F]FTrp) and 5-hydroxy-7-[18F]fluorotryptophan (5-HO-7-[18F]FTrp). We also report feasible synthetic routes for the preparation of the hitherto unknown boronate radiolabeling precursors and non-radioactive reference compounds. Under optimized conditions, alcohol-enhanced Cu-mediated radiofluorination of the respective precursors afforded NIn-Me-6-[18F]FTrp and 5-HO-7-[18F]FTrp as application-ready solutions in radiochemical yields of 45 ± 7% and 29 ± 4%, respectively. As such, our work provides access to two promising candidate probes for pathway-specific visualization of Trp metabolism in amounts sufficient for their preclinical evaluation.


Asunto(s)
Tomografía de Emisión de Positrones , Triptófano , Triptófano/metabolismo , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Quinurenina , Radiofármacos/química
19.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902295

RESUMEN

The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes , Serotonina , Triptófano Hidroxilasa , Animales , Ratones , Fibroblastos/metabolismo , Serotonina/biosíntesis , Triptófano/metabolismo , Triptófano Hidroxilasa/metabolismo
20.
Mol Biol (Mosk) ; 57(2): 299-306, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37000657

RESUMEN

Tryptophan hydroxylases 1 and 2 (TPH1 and TPH2) play a key role in the synthesis of serotonin (5-HT), a hormone and neurotransmitter, in the peripheral organs and brain, respectively. The main aim of this study was to clarify the distribution of mRNA of the Tph1 and Tph2 genes in brain structures under normal conditions and after inflammation. The experiments were carried out on young (4 weeks old) male C57BL/6 mice. The animals were divided into three groups: intact, control, injected ip with saline, and injected ip with 2 mg/kg of bacterial lipopolysaccharide (LPS). Markers of inflammation, spleen mass and thymus mass were assayed 5 days after the saline or LPS administration. In the frontal cortex, hippocampus, striatum, hypothalamus, and midbrain the concentrations of 5-HT and its main metabolite, 5-hydroxyindole acetic acid (5-HIAA), and TPH activity were assayed using HPLC, while Tph1 and Tph2 mRNA were quantified using quantitative real-time RT-PCR. A dramatic increase of spleen mass and decrease of thymus mass 5 days after LPS administration was shown. A significant increase of 5-HT and 5-HIAA levels in the midbrain as well as decrease of 5-HIAA concentration and TPH activity in hypothalamus in mice treated with LPS and saline compared with intact animals was revealed. The highest concentration of Tph2 gene mRNA was observed in the midbrain in 5-HT neuron bodies, while this gene mRNA level was lower in 5-HT endings (cortex, hippocampus, striatum, and hypothalamus). Trace amounts of Tph1 mRNA was found in all studied brain structures in mice of the three groups. Thus, Tph1 gene expression in the mouse brain is too low to significantly affect 5-HT synthesis in normal conditions and during inflammation.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Ratones , Masculino , Animales , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Serotonina/metabolismo , Lipopolisacáridos , ARN Mensajero/genética , Ácido Hidroxiindolacético/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA