Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 37(2): 93-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105425

RESUMEN

Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of ∼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Enfermedades de las Plantas , Xanthomonas , Estaciones del Año , Enfermedades de las Plantas/microbiología , Bacterias/genética , Genoma Bacteriano/genética , Mutación , Xanthomonas/genética
2.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37432099

RESUMEN

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Asunto(s)
Metagenómica , Xanthomonas , Filogenia , Enfermedades de las Plantas/microbiología , Genómica , Xanthomonas/genética
3.
Plant Dis ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715158

RESUMEN

North Carolina (NC) is the fifth largest producer of bell pepper (Capsicum annuum) in the US with an estimated 2,400 acres in production (NASS-USDA, 2022). A survey of bacterial diseases of peppers was initiated in 2020 after numerous bacterial spot outbreaks were reported in NC. Bacterial spot is caused by a complex of four Xanthomonads: X. euvesicatoria, X. vesicatoria, X. perforans, and X. hortorum pv. gardneri (Larrahondo-Rodríguez et al., 2022). If not preemptively managed, bacterial spot can cause up to 40% yield loss (Kousik and Ritchie, 1998). During the 2020 and 2021 growing seasons, 103 yellow mucoid colonies were isolated from plants representing 51 pepper cultivars symptomatic of bacterial spot, i.e., water-soaked leaf lesions that become necrotic spots on leaves and fruits across 22 commercial fields in NC following published methods (Klein-Gordon et al., 2021). All colonies were characterized to species using the qPCR species-specific primers and probes described by Strayer et al. 2016. Of the 103 colonies, 12 isolates tested positive for X. perforans. To confirm qPCR results, a Multi-Locus Sequence Analysis (MLSA) was run using fusA, gapA, gltA, gyrB, and lacF following previously described methods (Almeida et al., 2010) on three representative isolates: AHX61, collected in September 2020 from a field with 20% disease severity in Wake County on cv. Canary Bell; AHX261, collected in July 2021 from a field with 50% disease severity in Sampson County on Jalapeño; and AHX426, collected in August 2021 from a field with 50% disease severity in Dublin County on Jalapeño. All gene sequences were deposited to NCBI (GenBank Accessions: OQ799538-OQ799552) and compared to those from X. euvesicatoria, X. hortorum pv. gardneri, X. perforans, and X. vesicatoria type strains (Almeida et al., 2010). The MLSA showed AHX61, AHX261, and AHX426 cluster with X. perforans ICMP16690T, sharing 99-100% nucleotide similarity. Koch's postulates were performed with the three strains, Xp1484T [ X. perforans type strain, (Wilson 1987)], and water as a negative control. Three 10-week-old bell pepper plants (cv. Early Cal Wonder) were dip-inoculated in 600 mL of a bacterial suspension at an OD600 of 0.3 (~5x108 CFU/mL) and 0.04% Silwet L-77 per strain or water. All 18 plants were individually incubated in a plastic bag for 48 h post-inoculation at 28°C, 80% relative humidity, and 14 h:10 h light-dark cycle in a growth chamber, after which plastic bags were removed. Water-soaking and necrotic spots characteristic of bacterial spot were first observed at six days post-inoculation (dpi). At 14 dpi, symptomatic leaves were removed from treated plants to attempt pathogen re-isolation. Yellow mucoid colonies similar in morphology to those originally inoculated were recovered from all plants and confirmed to be X. perforans through sequencing; no isolates were recovered from water-treated plants. To our knowledge, this is the first time X. perforans is isolated in commercial bell pepper and specialty pepper fields in the state. This is an indication that the Xanthomonas population on peppers in the state is more diverse than previously reported and that pathogen populations will require monitoring for possible species shifts for this crop in NC.

4.
Phytopathology ; 113(3): 400-412, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36318253

RESUMEN

Xanthomonas perforans and X. euvesicatoria are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where X. perforans is the dominant pathogen of tomato and X. euvesicatoria that of pepper. This is in part due to the activity of avirulence proteins that are secreted by X. perforans strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic X. perforans lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic X. perforans and X. euvesicatoria. Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the X. perforans lineage. The other included a symporter of protons/glutamate, gltP, enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of X. perforans in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.


Asunto(s)
Especificidad del Huésped , Xanthomonas , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/microbiología , Genoma Bacteriano
5.
Phytopathology ; 113(8): 1394-1398, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37097444

RESUMEN

Due to the continuous use of copper containing bactericides without effective alternative bactericides, copper resistance has become more prevalent in plant pathogens, including Xanthomonas euvesicatoria pv. perforans (formerly Xanthomonas perforans), a predominant cause of bacterial leaf spot disease of tomato and pepper in the Southeastern United States. Previously, reports of copper resistance have been associated with a large conjugative plasmid. However, we have characterized a copper resistance genomic island located within the chromosome of multiple X. euvesicatoria pv. perforans strains. The island is distinct from a previously described chromosomally encoded copper resistance island in X. vesicatoria strain XVP26. Computational analysis revealed the genomic island to contain multiple genes associated with genetic mobility, including both phage-related genes and transposase. Among copper-tolerant strains of X. euvesicatoria pv. perforans isolated from Florida, the majority of strains were found to have the copper resistance chromosomally encoded rather than plasmid borne. Our results suggest that this copper resistance island may have two modes of horizontal gene transfer and that chromosomally encoded copper resistance genes may provide a fitness advantage over plasmid-borne resistance.

6.
Plant Dis ; 106(5): 1474-1485, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34894749

RESUMEN

Bacterial spot is one of the most serious diseases of tomato. It is caused by four species of Xanthomonas: X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria. Contaminated or infected seed can be a major source of inoculum for this disease. The use of certified pathogen-free seed is one of the primary management practices to reduce the inoculum load in commercial production. Current seed testing protocols rely mainly on plating the seed extract and conventional PCR; however, the plating method cannot detect viable but nonculturable cells, and the conventional PCR assay has limited capability to differentiate DNA extracted from viable or dead bacterial cells. To improve the sensitivity and specificity of the tomato seed testing method for bacterial spot pathogens, a long-amplicon quantitative PCR (qPCR) assay coupled with propidium monoazide (PMA-qPCR) was developed to quantify selectively the four pathogenic Xanthomonas species in tomato seed. The optimized PMA-qPCR procedure was evaluated on pure bacterial suspensions, bacteria-spiked seed extracts, and seed extracts of inoculated and naturally infected seed. A crude DNA extraction protocol also was developed, and PMA-qPCR with crude bacterial DNA extracts resulted in accurate quantification of 104 to 108 CFU/ml of viable bacteria when mixed with dead cells at concentrations as high as 107 CFU/ml in the seed extracts. With DNA purified from concentrated seed extracts, the PMA-qPCR assay was able to detect DNA of the target pathogens in seed samples spiked with ≥75 CFU/ml (about 0.5 CFU/seed) of the viable pathogens. Latent class analysis of the inoculated and naturally infected seed samples showed that the PMA-qPCR assay had greater sensitivity than plating the seed extracts on the semiselective modified Tween Medium B and CKTM media for all four target species. Being much faster and more sensitive than dilution plating, the PMA-qPCR assay has potential to be used as a standalone tool or in combination with the plating method to improve tomato seed testing and advance the production of clean seed.


Asunto(s)
Solanum lycopersicum , Xanthomonas , Solanum lycopersicum/microbiología , Extractos Vegetales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Semillas , Xanthomonas/genética
7.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498976

RESUMEN

Bacterial spot of tomato continues to pose a significant problem to tomato production worldwide. In Florida, bacterial spot of tomato caused by Xanthomonas perforans is one of the most important diseases responsible for tomato yield loss. This disease is difficult to control, and new strategies are continually being investigated to combat the devastating effect of this disease. Recent efforts focusing on essential oils based on small molecules have spurred interests in the utilization of this class of chemicals for disease management. In this study, we evaluated the efficacy of eugenol for the management of bacterial spot of tomato caused by X. perforans. In the greenhouse experiments, eugenol applied as a foliar spray significantly (p < 0.5) reduced bacterial spot disease compared to the untreated control. In the field experiments, the area under the disease progress curve (AUDPC) was significantly (p < 0.5) lower in the plots treated with eugenol or eugenol combined with the surfactant Cohere than in the untreated control plots, and it was comparable to the copper-based treatments. To provide additional insights into the possible pathways of eugenol activities, we applied a liquid chromatography mass spectrometry (LC-MS)-based metabolomic study using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) on X. perforans strain 91−118 treated with eugenol. Our results showed that eugenol affected metabolite production in multiple pathways critical to bacterial survival. For example, treatment of cells with eugenol resulted in the downregulation of the glutathione metabolism pathway and associated metabolites, except for 5-oxoproline, which accumulation is known to be toxic to living cells. While the peaks corresponding to the putatively identified sarmentosin showed the most significant impact and reduced in response to eugenol treatment, branched-chain amino acids, such as L-isoleucine, increased in production, suggesting that eugenol may not negatively affect the protein biosynthesis pathways. The results from our study demonstrated the efficacy of eugenol in the management of bacterial spot of tomato under greenhouse and field conditions and identified multiple pathways that are targeted.


Asunto(s)
Solanum lycopersicum , Xanthomonas , Eugenol/farmacología , Enfermedades de las Plantas/microbiología , Redes y Vías Metabólicas
8.
Plant Dis ; 105(3): 566-575, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32865478

RESUMEN

Tomato transplants are the primary means of establishing commercial tomato production fields in the eastern United States. Transplants are often suspected as the source of inoculum for major outbreaks in production fields of bacterial spot of tomato (BST) caused by Xanthomonas perforans (Xp). A combination of high plant densities with overhead irrigation, high humidity, and high temperatures are conducive to BST outbreaks during transplant production. In addition to chemical control, transplant growers use roguing to remove diseased transplants, as a primary way to manage BST during transplant production. The value of roguing is often questioned, because information about the rate of pathogen spread and the incubation period between infection and symptom development is limited. In this study, we evaluated the extent of X. perforans spread on tomato transplants relative to symptom development by using a rifampicin-resistant X. perforans strain and conducting experiments in an environmentally controlled greenhouse simulating grower practices and also at a commercial transplant facility in Florida. BST symptom development typically lagged behind X. perforans dispersal by at least 5 to 7 days depending on environmental conditions. Furthermore, X. perforans was capable of aerosolization, which resulted in long-distance dispersal of ≤2 m under highly favorable conditions. Growers should rogue diseased plants and surrounding nonsymptomatic plants by >1 and ≤3 m, depending on outbreak severity, to limit disease spread. As a result, proper disease management should reduce introduction of nonsymptomatic transplants into the field and subsequently reduce pesticide applications.


Asunto(s)
Epidemias , Solanum lycopersicum , Florida , Enfermedades de las Plantas , Estados Unidos , Xanthomonas
9.
Int J Mol Sci ; 21(11)2020 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-32517212

RESUMEN

Bacterial spot (BS) is one of the most devastating foliar bacterial diseases of tomato and is caused by multiple species of Xanthomonas. We performed the RNA sequencing (RNA-Seq) analysis of three tomato lines with different levels of resistance to Xanthomonas perforans race T4 to study the differentially expressed genes (DEGs) and transcript-based sequence variations. Analysis between inoculated and control samples revealed that resistant genotype Solanum pimpinellifolium accession PI 270443 had more DEGs (834), followed by susceptible genotype tomato (S. lycopersicum L) breeding line NC 714 (373), and intermediate genotype tomato breeding line NC 1CELBR (154). Gene ontology (GO) terms revealed that more GO terms (51) were enriched for upregulated DEGs in the resistant genotype PI 270443, and more downregulated DEGs (67) were enriched in the susceptible genotype NC 714. DEGs in the biotic stress pathway showed more upregulated biotic stress pathway DEGs (67) for PI 270443 compared to more downregulated DEGs (125) for the susceptible NC 714 genotype. Resistant genotype PI 270443 has three upregulated DEGs for pathogenesis-related (PR) proteins, and susceptible genotype NC 714 has one downregulated R gene. Sequence variations called from RNA-Seq reads against the reference genome of susceptible Heinz 1706 showed that chr11, which has multiple reported resistance quantitative trait loci (QTLs) to BS race T4, is identical between two resistant lines, PI 270443 and NC 1CELBR, suggesting that these two lines share the same resistance QTLs on this chromosome. Several loci for PR resistance proteins with sequence variation between the resistant and susceptible tomato lines were near the known Rx4 resistance gene on chr11, and additional biotic stress associated DEGs near to the known Rx4 resistance gene were also identified from the susceptible NC 714 line.


Asunto(s)
Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Transcriptoma , Xanthomonas , Biología Computacional/métodos , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Variación Genética , Interacciones Huésped-Patógeno , Solanum lycopersicum/inmunología , Enfermedades de las Plantas/inmunología , Transducción de Señal , Estrés Fisiológico
10.
New Phytol ; 221(2): 1001-1009, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156705

RESUMEN

The immune pathway responsible for perception of the Xanthomonas perforans effector XopJ4 was identified in the plant Nicotiana benthamiana. This pathogen causes significant yield loss in commercial tomato cultivation. Genetic mapping and viral-induced gene silencing were used to identify immune signaling components of the XopJ4 perception pathway in N. benthamiana. Transient complementation assays were performed to determine the functionality of gene variants and co-immunoprecipitation assays were used to gain insight into the molecular mechanism of the pathway. Two N. benthamiana ethyl methanesulfonate (EMS) mutants deficient for XopJ4 perception were identified as having loss-of-function mutations in the gene encoding the nucleotide binding, leucine-rich repeat (NLR) protein NbZAR1. Silencing of a receptor-like cytoplasmic kinase family XII gene, subsequently named XOPJ4 IMMUNITY 2 (JIM2), blocks perception of XopJ4. This study demonstrates the feasibility of conducting mutant screens in N. benthamiana to investigate the genetic basis of the plant immune system and other processes. The identification of NbZAR1 and JIM2 as mediating XopJ4 perception in N. benthamiana supports the model of ZAR1 being involved in the perception of many different pathogen effector proteins with specificity dictated by associated receptor-like cytoplasmic kinases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nicotiana/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Transducción de Señal , Xanthomonas/fisiología , Proteínas Bacterianas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Nicotiana/inmunología , Nicotiana/microbiología
11.
Can J Microbiol ; 61(10): 753-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26308592

RESUMEN

Field strains of tomato bacterial spot pathogen (Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri) were characterized for sensitivity to copper and species composition. A total of 98 strains were isolated from symptomatic leaf and fruit samples collected from 18 tomato fields in Ontario. In greenhouse pathogenicity tests, most of the field strains caused severe (37 strains) to highly severe (23 strains) symptoms on 'Bonny Best' tomato plants, whereas 38 strains caused moderate symptoms. In MGY agar plates amended with various concentrations of copper sulfate, 11 strains were completely sensitive (no growth) and 87 strains were resistant (grew on 1.0 mmol/L or higher copper concentration). PCR analysis of the hrp gene cluster followed by restriction digestion with HaeIII and sequencing identified X. gardneri (35 strains) and X. perforans (26 strains) as predominant species and X. euvesicatoria and X. vesicatoria as less common species in Ontario tomato fields. Separation of field strains into various species was also confirmed with starch hydrolysis activity on agar medium. Moreover, 72 field strains produced shiny greenish-yellow colonies surrounded by a milky zone on xanthomonad differential (Xan-D) medium, and the colonies of 26 strains did not produce a milky zone. Thirty-four strains could not be clustered into any species and 25 of those strains were negative for the hrp gene PCR and also did not produce a milky zone around colonies on Xan-D medium. Our results suggest a widespread existence of copper-resistant strains and an increase in X. perforans strains of bacterial spot pathogen in Ontario. This information on copper resistance and species composition within bacterial spot pathogens in Ontario will be helpful for developing effective disease management strategies, making cultivar selection, and breeding new tomato cultivars.


Asunto(s)
Cobre/farmacología , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Xanthomonas/fisiología , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Ontario , Hojas de la Planta/microbiología , Xanthomonas/efectos de los fármacos , Xanthomonas/genética , Xanthomonas/patogenicidad
12.
Plants (Basel) ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37176889

RESUMEN

Bacterial spot of tomato is among the most economically relevant diseases affecting tomato plants globally. In previous studies, non-formulated magnesium oxide nanoparticles (nano-MgOs) significantly reduced the disease severity in greenhouse and field conditions. However, the aggregation of nano-MgO in liquid suspension makes it challenging to use in field applications. Therefore, we formulated two novel MgO nanomaterials (SgMg #3 and SgMg #2.5) and one MgOH2 nanomaterial (SgMc) and evaluated their physical characteristics, antibacterial properties, and disease reduction abilities. Among the three Mg nanomaterials, SgMc showed the highest efficacy against copper-tolerant strains of Xanthomonas perforans in vitro, and provided disease reduction in the greenhouse experiments compared with commercial Cu bactericide and an untreated control. However, SgMc was not consistently effective in field conditions. To determine the cause of its inconsistent efficacy in different environments, we monitored particle size, zeta potential, morphology, and crystallinity for all three formulated materials and nano-MgOs. The MgO particle size was determined by the scanning electron microscopy (SEM) and dynamic light scattering (DLS) techniques. An X-ray diffraction (XRD) study confirmed a change in the crystallinity of MgO from a periclase to an Mg(OH)2 brucite crystal structure. As a result, the bactericidal activity correlated with the high crystallinity present in nano-MgOs and SgMc, while the inconsistent antimicrobial potency of SgMg #3 and SgMg #2.5 might have been related to loss of crystallinity. Future studies are needed to determine which specific variables impair the performance of these nanomaterials in the field compared to under greenhouse conditions. Although SgMc did not lead to significant disease severity reduction in the field, it still has the potential to act as an alternative to Cu against bacterial spot disease in tomato transplant production.

13.
Metabolites ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34940636

RESUMEN

Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; ß-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.

14.
Front Microbiol ; 10: 448, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930868

RESUMEN

Prior to the identification of Xanthomonas perforans associated with bacterial spot of tomato in 1991, X. euvesicatoria was the only known species in Florida. Currently, X. perforans is the Xanthomonas sp. associated with tomato in Florida. Changes in pathogenic race and sequence alleles over time signify shifts in the dominant X. perforans genotype in Florida. We previously reported recombination of X. perforans strains with closely related Xanthomonas species as a potential driving factor for X. perforans evolution. However, the extent of recombination across the X. perforans genomes was unknown. We used a core genome multilocus sequence analysis approach to identify conserved genes and evaluated recombination-associated evolution of these genes in X. perforans. A total of 1,356 genes were determined to be "core" genes conserved among the 58 X. perforans genomes used in the study. Our approach identified three genetic groups of X. perforans in Florida based on the principal component analysis (PCA) using core genes. Nucleotide variation in 241 genes defined these groups, that are referred as Phylogenetic-group Defining (PgD) genes. Furthermore, alleles of many of these PgD genes showed 100% sequence identity with X. euvesicatoria, suggesting that variation likely has been introduced by recombination at multiple locations throughout the bacterial chromosome. Site-specific recombinase genes along with plasmid mobilization and phage associated genes were observed at different frequencies in the three phylogenetic groups and were associated with clusters of recombinant genes. Our analysis of core genes revealed the extent, source, and mechanisms of recombination events that shaped the current population and genomic structure of X. perforans in Florida.

15.
Front Microbiol ; 9: 2176, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283415

RESUMEN

Following analysis of eight phages under in vitro, growth chamber and greenhouse conditions with the bacterial spot of tomato pathogen Xanthomonas perforans, there was no correlation between disease control efficacy and in vitro phage multiplication, in vitro bacterial suppression, or in vivo phage multiplication in the presence of the host, but there was a low correlation between phage persistence on the leaf surface and disease control. Two of the 8 virulent phages (ΦXv3-21 and ΦXp06-02) were selected for in depth analysis with two X. perforans (Xp06-2-1 and Xp17-12) strains. In in vitro experiments, phage ΦXv3-21 was equally effective in infecting the two bacterial strains based on efficiency of plating (EOP). Phage ΦXp06-02, on the other hand, had a high EOP on strain Xp06-2-1 but a lower EOP on strain Xp17-12. In several growth chamber experiments, ΦXv3-21 was less effective than phage ΦXp06-02 in reducing disease caused by strain Xp06-2-1, but provided little or no disease control against strain Xp17-12. Interestingly, ΦXp06-02 could multiply to significantly higher levels on the tomato leaf surface than phage ΦXv3-21. The leaf surface appears to be important in terms of the ability of certain bacteriophages to multiply in the presence of the bacterial host. ΦXv3-21, when applied to grapefruit leaves in combination with a bacterial host, was unable to multiply to high levels, whereas on tomato leaflets the phage multiplied exponentially. One plausible explanation is that the leaf surface may be an important factor for attachment of certain phages to their bacterial host.

17.
J Plant Physiol ; 209: 105-114, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28027498

RESUMEN

Bacterial spot of tomato (Solanum lycopersicum L.) caused by several Xanthomonas species is one of the most destructive diseases. Genes regulating the hypersensitive resistance and field resistance to X. perforans race T3 have been intensively investigated over the last decade. However, a comparative analysis of cellular responses to the pathogen in susceptible and resistant hosts has not been completed, which prevents the detailed understanding of the interactions between the pathogen and tomato plants. In this study, the characteristics of lesions, stomata, and pathogen colonization in hypersensitive response (HR) PI 128216, field-resistant PI 114490, and susceptible OH 88119 tomato plants after inoculation with green fluorescent protein-labeled X. perforans race T3 bacteria were investigated. Significant differences in developmental processes and the micromorphology of spot lesions among three tomato lines were observed. Our results suggested that the faster lesion development in OH 88119 plants compared with that of the other two lines was associated with a greater increase in the stomatal apertures over a longer period following bacterial inoculation. The depth of bacterial colonization and pathogen density inside infected leaves in OH 88119 were also significantly different from that of resistant tomato plants. Determination of the ultrastructural responses to X. perforans among three tomato lines revealed that cell wall defense response was the main difference between resistant and susceptible tomato lines. These results may provide fundamental information for understanding the cellular and molecular mechanisms regulating tomato responses to X. perforans race T3.


Asunto(s)
Resistencia a la Enfermedad , Ecotipo , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/citología , Solanum lycopersicum/microbiología , Xanthomonas/fisiología , Susceptibilidad a Enfermedades , Fluorescencia , Células del Mesófilo/metabolismo , Células del Mesófilo/ultraestructura , Estomas de Plantas/citología , Estomas de Plantas/microbiología , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura
18.
Front Plant Sci ; 7: 1805, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018370

RESUMEN

Multiple species of Xanthomonas cause bacterial spot of tomato (BST) and pepper. We sequenced five Xanthomonas euvesicatoria strains isolated from three continents (Africa, Asia, and South America) to provide a set of representative genomes with temporal and geographic diversity. LMG strains 667, 905, 909, and 933 were pathogenic on tomato and pepper, except LMG 918 elicited a hypersensitive reaction (HR) on tomato. Furthermore, LMG 667, 909, and 918 elicited a HR on Early Cal Wonder 30R containing Bs3. We examined pectolytic activity and starch hydrolysis, two tests which are useful in differentiating X. euvesicatoria from X. perforans, both causal agents of BST. LMG strains 905, 909, 918, and 933 were nonpectolytic while only LMG 918 was amylolytic. These results suggest that LMG 918 is atypical of X. euvesicatoria. Sequence analysis of all the publicly available X. euvesicatoria and X. perforans strains comparing seven housekeeping genes identified seven haplotypes with few polymorphisms. Whole genome comparison by average nucleotide identity (ANI) resulted in values of >99% among the LMG strains 667, 905, 909, 918, and 933 and X. euvesicatoria strains and >99.6% among the LMG strains and a subset of X. perforans strains. These results suggest that X. euvesicatoria and X. perforans should be considered a single species. ANI values between strains of X. euvesicatoria, X. perforans, X. allii, X. alfalfa subsp. citrumelonis, X. dieffenbachiae, and a recently described pathogen of rose were >97.8% suggesting these pathogens should be a single species and recognized as X. euvesicatoria. Analysis of the newly sequenced X. euvesicatoria strains revealed interesting findings among the type 3 (T3) effectors, relatively ancient stepwise erosion of some T3 effectors, additional X. euvesicatoria-specific T3 effectors among the causal agents of BST, orthologs of avrBs3 and avrBs4, and T3 effectors shared among xanthomonads pathogenic against various hosts. The results from this study supports the finding that T3 effector repertoire and host range are fundamental for the study of host-microbe interaction but of little relevance to bacterial speciation.

19.
3 Biotech ; 5(3): 245-252, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28324289

RESUMEN

Ralstonia solanacearum is a causative agent of bacterial wilt in many economically important crops, and Xanthomonas perforans is the causal organism of bacterial spot, one of the most important diseases of vegetables. A multiplex PCR protocol has been developed for the simultaneous, specific and rapid identification of R. solanacearum and X. perforans in plant materials. Species-specific primers RS-F-759 and RS-R-760 for R. solanacearum, RST2 and RST3 for X. perforans were used for identification of both pathogens at primer concentrations of 1:4 by optimization of multiplex PCR at annealing temperature of about 61 ± 1 °C. With these primer sets, specific amplification of 281- and 840-bp PCR products was obtained for R. solanacearum and X. perforans, respectively. The multiplex PCR assay was validated with susceptible plants mechanically inoculated with both the pathogens; specific PCR products confirmed the presence of R. solanacearum and X. perforans. The multiplex PCR is valuable in identification as well as primary screening of cultivars of both pathogens. The present study is a rapid and easy method for early identification of pathogens from asymptomatic and symptomatic plant materials.

20.
Front Plant Sci ; 6: 1173, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734053

RESUMEN

Bacterial spot, incited by several Xanthomonas sp., is a serious disease in tomato (Solanum lycopersicum L.). Although genetics of resistance has been widely investigated, the interactions between the pathogen and tomato plants remain unclear. In this study, tanscriptomes of X. perforans race T3 infected tomato lines were compared to those of controls. An average of 7 million reads were generated with approximately 21,526 genes mapped in each sample post-inoculation at 6 h (6 HPI) and 6 days (6 DPI) using RNA-sequencing technology. Overall, the numbers of differentially expressed genes (DEGs) were higher in the resistant tomato line PI 114490 than in the susceptible line OH 88119, and the numbers of DEGs were higher at 6 DPI than at 6 HPI. Fewer genes (78 in PI 114490 and 15 in OH 88119) were up-regulated and most DEGs were down-regulated, suggesting that the inducible defense response might not be fully activated at 6 HPI. Accumulation expression levels of 326 co-up regulated genes in both tomato lines at 6 DPI might be involved in basal defense, while the specific and strongly induced genes at 6 DPI might be correlated with the resistance in PI 114490. Most DEGs were involved in plant hormone signal transduction, plant-pathogen interaction and phenylalanine metabolism, and the genes significantly up-regulated in PI 114490 at 6 DPI were associated with defense response pathways. DEGs containing NBS-LRR domain or defense-related WRKY transcription factors were also identified. The results will provide a valuable resource for understanding the interactions between X. perforans and tomato plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA