Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199506

RESUMEN

Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.


Asunto(s)
Proteómica , Bazo , Animales , Ratones , Proteómica/métodos , Bazo/química , Bazo/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteoma/análisis
2.
J Biol Chem ; 300(3): 105682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272233

RESUMEN

Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.


Asunto(s)
Ciclotidas , Insecticidas , Oldenlandia , Ciclotidas/genética , Ciclotidas/farmacología , Ciclotidas/química , Insecticidas/química , Insecticidas/farmacología , Leucina , Lisina/genética , Mutagénesis , Proteínas de Plantas/metabolismo , Oldenlandia/química , Estabilidad Proteica , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos
3.
J Biol Chem ; 299(3): 102997, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764523

RESUMEN

Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.


Asunto(s)
Escherichia coli , Proteínas de Plantas , Secuencia de Aminoácidos , Proteínas de Plantas/metabolismo , Ciclización , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas/metabolismo , Péptido Sintasas/metabolismo , Ingeniería de Proteínas , Péptidos/metabolismo , Endopeptidasas/metabolismo
4.
J Biol Chem ; 298(10): 102502, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36116553

RESUMEN

Under pathophysiologic conditions such as Alzheimer's disease and cancer, the endolysosomal cysteine protease legumain was found to translocate to the cytosol, the nucleus, and the extracellular space. These noncanonical localizations demand for a tight regulation of legumain activity, which is in part conferred by protein inhibitors. While there is a significant body of knowledge on the interaction of human legumain with endogenous cystatins, only little is known on its regulation by fungal mycocypins. Mycocypins are characterized by (i) versatile, plastic surface loops allowing them to inhibit different classes of enzymes and (ii) a high resistance toward extremes of pH and temperature. These properties make mycocypins attractive starting points for biotechnological and medical applications. In this study, we show that mycocypins utilize an adaptable reactive center loop to target the active site of legumain in a substrate-like manner. The interaction was further stabilized by variable, isoform-specific exosites, converting the substrate recognition into inhibition. Additionally, we found that selected mycocypins were capable of covalent complex formation with legumain by forming a disulfide bond to the active site cysteine. Furthermore, our inhibition studies with other clan CD proteases suggested that mycocypins may serve as broad-spectrum inhibitors of clan CD proteases. Our studies uncovered the potential of mycocypins as a new scaffold for drug development, providing the basis for the design of specific legumain inhibitors.


Asunto(s)
Cistatinas , Cisteína Endopeptidasas , Humanos , Cisteína Endopeptidasas/metabolismo , Cistatinas/metabolismo , Dominio Catalítico , Péptido Hidrolasas/metabolismo
5.
J Biomol NMR ; 77(1-2): 25-37, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36539644

RESUMEN

NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled P.furiosus Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Ligadura
6.
New Phytol ; 238(4): 1534-1545, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36843268

RESUMEN

Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.


Asunto(s)
Fabaceae , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Glicina , Cisteína Endopeptidasas/metabolismo , Plantas/metabolismo , Ligasas/metabolismo
7.
Parasitology ; 150(8): 683-692, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092694

RESUMEN

The laboratory diagnosis of intestinal schistosomiasis, carried out by detecting parasite eggs in feces, has low sensitivity when applied to individuals with low parasitic load. Serological tests can be more sensitive for the diagnosis of the disease. Therefore, the objective of this work was to develop and evaluate an ELISA-based immunoenzymatic assay, using a Schistosoma mansoni multiepitope antigen (ELISA IgG anti-SmME). For this, the amino acid sequences of S. mansoni cathepsin B and asparaginyl endopeptidase were submitted to the prediction of B cell epitopes and, together with peptide sequences obtained from earlier works, were used in the construction of a minigene. The multiepitope protein was expressed in Escherichia coli and the performance of the ELISA IgG anti-SmME for schistosomiasis was evaluated using serum samples from 107 individuals either egg positive or negative. In addition, 11 samples from individuals with other helminth infections were included. The ELISA IgG anti-SmME showed a sensitivity of 81.1% and a specificity of 46.1%. Further analysis revealed a 77.2% sensitivity in diagnosis of individuals with egg counts of ≤12 epg (eggs per gram feces) and 87.5% for individuals with 13­99 epg. It is worth mentioning that, to our knowledge, this was the first study using a multiepitope recombinant antigen in an ELISA for diagnosis of intestinal schistosomiasis, which demonstrated promising results in the diagnosis of individuals with low parasitic loads.


Asunto(s)
Esquistosomiasis mansoni , Animales , Humanos , Esquistosomiasis mansoni/diagnóstico , Schistosoma mansoni/genética , Antígenos Helmínticos , Sensibilidad y Especificidad , Recuento de Huevos de Parásitos , Ensayo de Inmunoadsorción Enzimática/métodos , Heces/parasitología , Anticuerpos Antihelmínticos , Inmunoglobulina G
8.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175445

RESUMEN

Stem-cell-based therapy is very promising for Alzheimer's disease (AD), yet has not become a reality. A critical challenge is the transplantation microenvironment, which impacts the therapeutic effect of stem cells. In AD brains, amyloid-beta (Aß) peptides and inflammatory cytokines continuously poison the tissue microenvironment, leading to low survival of grafted cells and restricted efficacy. It is necessary to create a growth-supporting microenvironment for transplanted cells. Recent advances in AD studies suggest that the asparaginyl endopeptidase (AEP) is a potential intervention target for modifying pathological changes. We here chose APP/PS1 mice as an AD model and employed pharmacological inhibition of the AEP for one month to improve the brain microenvironment. Thereafter, we transplanted neural stem cells (NSCs) into the hippocampus and maintained therapy for one more month. We found that inhibition of AEPs resulted in a significant decrease of Aß, TNF-α, IL-6 and IL-1ß in their brains. In AD mice receiving NSC transplantation alone, the survival of NSCs was at a low level, while in combination with AEP inhibition pre-treatment the survival rate of engrafted cells was doubled. Within the 2-month treatment period, implantation of NSCs plus pre-inhibition of the AEP significantly enhanced neural plasticity of the hippocampus and rescued cognitive impairment. Neither NSC transplantation alone nor AEP inhibition alone achieved significant efficacy. In conclusion, pharmacological inhibition of the AEP ameliorated brain microenvironment of AD mice, and thus improved the survival and therapeutic efficacy of transplanted stem cells.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Animales , Ratones , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Cisteína Endopeptidasas , Modelos Animales de Enfermedad , Ratones Transgénicos , Inhibidores de Cisteína Proteinasa
9.
Angew Chem Int Ed Engl ; 62(1): e202214412, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36347766

RESUMEN

Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.


Asunto(s)
Cisteína Endopeptidasas , Proteínas , Proteínas/metabolismo , Cisteína Endopeptidasas/metabolismo , Simulación de Dinámica Molecular , Ligadura
10.
J Neurosci ; 41(1): 193-210, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172978

RESUMEN

Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not ß-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.


Asunto(s)
Dolor en Cáncer/inducido químicamente , Carcinoma de Células Escamosas/complicaciones , Cisteína Endopeptidasas , Neoplasias de la Boca/complicaciones , Receptor PAR-2/agonistas , Anciano , Anciano de 80 o más Años , Animales , Arrestina/metabolismo , Dolor en Cáncer/psicología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Cisteína Endopeptidasas/administración & dosificación , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteína Quinasa C/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor PAR-2/genética , Microambiente Tumoral/efectos de los fármacos
11.
J Biol Chem ; 297(6): 101325, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710371

RESUMEN

Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Ciclización , Ciclotidas/genética , Ciclotidas/metabolismo , Cisteína Endopeptidasas/análisis , Cisteína Endopeptidasas/genética , Modelos Moleculares , Momordica/química , Momordica/genética , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Ingeniería de Proteínas , Transcriptoma
12.
J Exp Bot ; 73(18): 6103-6114, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35724659

RESUMEN

Plant molecular farming aims to provide a green, flexible, and rapid alternative to conventional recombinant expression systems, capable of producing complex biologics such as enzymes, vaccines, and antibodies. Historically, the recombinant expression of therapeutic peptides in plants has proven difficult, largely due to their small size and instability. However, some plant species harbour the capacity for peptide backbone cyclization, a feature inherent in stable therapeutic peptides. One obstacle to realizing the potential of plant-based therapeutic peptide production is the proteolysis of the precursor before it is matured into its final stabilized form. Here we demonstrate the rational domestication of Nicotiana benthamiana within two generations to endow this plant molecular farming host with an expanded repertoire of peptide sequence space. The in planta production of molecules including an insecticidal peptide, a prostate cancer therapeutic lead, and an orally active analgesic is demonstrated.


Asunto(s)
Productos Biológicos , Domesticación , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas/metabolismo , Péptidos/metabolismo , Productos Biológicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293424

RESUMEN

Legumain is a lysosomal cysteine protease with strict specificity for cleaving after asparagine residues. By sequence comparison, legumain belongs to MEROPS clan CD of the cysteine proteases, which indicates its structural and mechanistic relation to caspases. Contrasting caspases, legumain harbors a pH-dependent ligase activity in addition to the protease activity. Although we already have a significant body of knowledge on the catalytic activities of legumain, many mechanistic details are still elusive. In this study, we provide evidence that extended active site residues and substrate conformation are steering legumain activities. Biochemical experiments and bioinformatics analysis showed that the catalytic Cys189 and His148 residues are regulated by sterically close Glu190, Ser215 and Asn42 residues. While Glu190 serves as an activity brake, Ser215 and Asn42 have a favorable effect on legumain protease activity. Mutagenesis studies using caspase-9 as model enzyme additionally showed that a similar Glu190 activity brake is also implemented in the caspases. Furthermore, we show that the substrate's conformational flexibility determines whether it will be hydrolyzed or ligated by legumain. The functional understanding of the extended active site residues and of substrate prerequisites will allow us to engineer proteases with increased enzymatic activity and better ligase substrates, with relevance for biotechnological applications.


Asunto(s)
Asparagina , Caspasas , Dominio Catalítico , Caspasa 9 , Caspasas/genética , Ligasas
14.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142134

RESUMEN

Alzheimer's disease (AD) is incurable dementia closely associated with aging. Most cases of AD are sporadic, and very few are inherited; the pathogenesis of sporadic AD is complex and remains to be elucidated. The asparaginyl endopeptidase (AEP) or legumain is the only recognized cysteine protease that specifically hydrolyzes peptide bonds after asparagine residues in mammals. The expression level of AEPs in healthy brains is far lower than that of peripheral organs. Recently, growing evidence has indicated that aging may upregulate and overactivate brain AEPs. The overactivation of AEPs drives the onset of AD through cleaving tau and amyloid precursor proteins (APP), and SET, an inhibitor of protein phosphatase 2A (PP2A). The AEP-mediated cleavage of these peptides enhances amyloidosis, promotes tau hyperphosphorylation, and ultimately induces neurodegeneration and cognitive impairment. Upregulated AEPs and related deleterious reactions constitute upstream events of amyloid/tau toxicity in the brain, and represent early pathological changes in AD. Thus, upregulated AEPs are an emerging drug target for disease modification and a potential biomarker for predicting preclinical AD. However, the presence of the blood-brain barrier greatly hinders establishing body-fluid-based methods to measure brain AEPs. Research on AEP-activity-based imaging probes and our recent work suggest that the live brain imaging of AEPs could be used to evaluate its predictive efficacy as an AD biomarker. To advance translational research in this area, AEP imaging probes applicable to human brain and AEP inhibitors with good druggability are urgently needed.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Asparagina/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cisteína Endopeptidasas/metabolismo , Humanos , Mamíferos/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Planta ; 252(6): 97, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33155076

RESUMEN

MAIN CONCLUSION: We demonstrate the production of a structurally correct cyclotide in rice suspension cells with co-expression of a ligase-type AEP, which unlocks monocotyledons as production platforms to produce cyclotides. Cyclotides are a class of backbone-cyclic plant peptides that harbor a cystine knot composed of three disulfide bonds. These structural features make cyclotides particularly stable, and thus they have attracted significant attention for their use in biotechnological applications such as drug design. Currently, chemical synthesis is the predominant strategy to produce cyclotides for research purposes. However, synthetic production becomes costly both economically and environmentally at large scale. Plants offer an attractive alternative to chemical synthesis because of their lower cost and environmental footprint. In this study, rice suspension cells were engineered to produce the prototypical cyclotide, kalata B1 (kB1), a cyclotide with insecticidal properties from the African plant Oldenlandia affinis. Engineered rice cells produced structurally validated kB1 at yields of 64.21 µg/g (DW), which was dependent on the co-expression of a peptide ligase-competent asparaginyl endopeptidase OaAEP1b from O. affinis. Without co-expression, kB1 was predominantly produced as linear peptide. Through HPLC-MS co-elution, reduction, alkylation, enzymatic digestion, and proton NMR analysis, kB1 produced in rice was shown to be structurally identical to native kB1. This study reports the first example of an engineered plant suspension cell culture with the required molecular machinery for efficient production and cyclisation of a heterologous cyclotide.


Asunto(s)
Biotecnología , Ciclotidas , Oldenlandia , Oryza , Biotecnología/métodos , Ciclotidas/biosíntesis , Ciclotidas/genética , Oldenlandia/genética , Oryza/enzimología , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
16.
New Phytol ; 226(1): 21-31, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31679161

RESUMEN

Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the ß-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.


Asunto(s)
Cisteína Endopeptidasas , Vacuolas , Animales , Estadios del Ciclo de Vida , Proteínas de Plantas , Plantas
17.
Biol Chem ; 400(12): 1529-1550, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31021817

RESUMEN

Legumain, which is also known as vacuolar processing enzyme (VPE) or asparaginyl endopeptidase (AEP), is a cysteine protease that was first discovered and characterized in the leguminous seeds of the moth bean in the early 1990s. Later, this enzyme was also detected in higher organisms, including eukaryotes. This pH-dependent protease displays the highest activity in acidic endolysosomal compartments; however, legumain also displays nuclear, cytosolic and extracellular activity when stabilized by other proteins or intramolecular complexes. Based on the results from over 25 years of research, this protease is involved in multiple cellular events, including protein degradation and antigen presentation. Moreover, when dysregulated, this protease contributes to the progression of several diseases, with cancer being the well-studied example. Research on legumain biology was undoubtedly facilitated by the use of small molecule chemical tools. Therefore, in this review, I present the historical perspectives and most current strategies for the development of small molecule substrates, inhibitors and activity-based probes for legumain. These tools are of paramount importance in elucidating the roles of legumain in multiple biological processes. Finally, as this enzyme appears to be a promising molecular target for anticancer therapies, the development of legumain-activated prodrugs is also described.


Asunto(s)
Cisteína Endopeptidasas/análisis , Inhibidores Enzimáticos/química , Sondas Moleculares/química , Péptidos/química , Profármacos/química , Animales , Cisteína Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Fabaceae/enzimología , Humanos , Péptidos/farmacología , Profármacos/farmacología , Semillas/enzimología
18.
J Biol Chem ; 292(30): 12398-12411, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28536266

RESUMEN

Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 (preproalbumin with sunflower trypsin inhibitor-1) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 (sunflower trypsin inhibitor-1) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ, its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide.


Asunto(s)
Helianthus/química , Péptidos Cíclicos/química , Prealbúmina/química , Péptidos Cíclicos/metabolismo , Prealbúmina/metabolismo , Conformación Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo
19.
J Biomol NMR ; 71(4): 225-235, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29536230

RESUMEN

Segmental isotopic labeling can facilitate NMR studies of large proteins, multi-domain proteins, and proteins with repetitive sequences by alleviating NMR signal overlaps. Segmental isotopic labeling also allows us to investigate an individual domain in the context of a full-length protein by NMR. Several established methods are available for segmental isotopic labeling such as intein-mediated ligation, but each has specific requirements and limitations. Here, we report an enzymatic approach using bacterially produced asparagine endopeptidase from Oldenlandia affinis for segmental isotopic labeling of a protein with repetitive sequences, a designed armadillo repeat protein, by overcoming some of the shortcomings of enzymatic ligation for segmental isotopic labeling.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas del Dominio Armadillo/metabolismo , Proteínas Bacterianas/metabolismo , Oldenlandia/enzimología
20.
New Phytol ; 218(3): 923-928, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28322452

RESUMEN

Contents Summary 923 I. Introduction 923 II. Plant AEPs with macrocyclizing ability 924 III. Mechanism of macrocyclization by AEPs 925 IV. Conclusions 927 Acknowledgements 927 References 927 SUMMARY: Plant asparaginyl endopeptidases (AEPs) are important for the post-translational processing of seed storage proteins via cleavage of precursor proteins. Some AEPs also function as peptide bond-makers during the biosynthesis of several unrelated classes of cyclic peptides, namely the kalata-type cyclic peptides, PawS-Derived Peptides and cyclic knottins. These three families of gene-encoded peptides have different evolutionary origins, but all have recruited AEPs for their maturation. In the last few years, the field has advanced rapidly, with the biochemical characterization of three plant AEPs capable of peptide macrocyclization, and insights have been gained from the first AEP crystal structures, albeit mammalian ones. Although the biochemical studies have improved our understanding of the mechanism of action, the focus now is to understand what changes in AEP sequence and structure enable some plant AEPs to perform macrocyclization reactions.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Ciclización , Cisteína Endopeptidasas/química , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA