Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426819

RESUMEN

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

2.
Small ; : e2404605, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248680

RESUMEN

Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m-2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.

3.
Chemistry ; : e202402624, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158515

RESUMEN

Supramolecular chemistry achieves higher-order molecular self-assembly through non-covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a "bottom-up" perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self-assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self-assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host-guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies' unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio-delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.

4.
Anal Bioanal Chem ; 416(4): 983-992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38127274

RESUMEN

Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.


Asunto(s)
Nanocompuestos , Zearalenona , Humanos , Zearalenona/análisis , Cobre/análisis , Contaminación de Alimentos/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , ADN de Cadena Simple , Límite de Detección
5.
Angew Chem Int Ed Engl ; 63(30): e202405209, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712643

RESUMEN

Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8 ⋅ 1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.

6.
Small ; 19(37): e2301512, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37154221

RESUMEN

The covalent organic frameworks (COFs) membrane with ordered and confined one-dimensional channel has been considered as a promising material to harvest the salinity gradient energy from the seawater and river water. However, the application of the COFs in the field of energy conversion still faces the challenges in membrane preparation. Herein, energy harvesting is achieved by taking advantage of a COFs membrane where TpDB-HPAN is synthesized via layer-by-layer self-assembly strategy at room temperature. The carboxy-rich TpDB COFs can be expediently assembled onto the substrate with an environmental-friendly method. The increased open-circuit voltage (Voc ) endows TpDB-HPAN membrane with a remarkable energy harvesting performance. More importantly, the application perspective is also illuminated by the cascade system. With the advantages of green synthesis, the TpDB-HPAN membrane can be considered as a low-cost and promising candidate for energy conversion.

7.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357531

RESUMEN

TLR4 complexes are essential for the initiation of the LPS-induced innate immune response. The Myddosome, which mainly contains TLR4, TIRAP, MyD88, IRAK1/4 and TRAF6 proteins, is regarded as a major complex of TLR4. Although the Myddosome has been well studied, a quantitative description of the Myddosome assembly dynamics is still lacking. Furthermore, whether some unknown TLR4 complexes exist remains unclear. In this study, we constructed a SWATH-MS data-based mathematical model that describes the component assembly dynamics of TLR4 complexes. In addition to Myddosome, we suggest that a TIRAP-independent MyD88 activation complex is formed upon LPS stimulation, in which TRAF6 is not included. Furthermore, quantitative analysis reveals that the distribution of components in TIRAP-dependent and -independent MyD88 activation complexes are LPS stimulation-dependent. The two complexes compete for recruiting IRAK1/4 proteins. MyD88 forms higher-order assembly in the Myddosome and we show that the strategy to form higher-order assembly is also LPS stimulation-dependent. MyD88 forms a long chain upon weak stimulation, but forms a short chain upon strong stimulation. Higher-order assembly of MyD88 is directly determined by the level of TIRAP in the Myddosome, providing a formation mechanism for efficient signaling transduction. Taken together, our study provides an enhanced understanding of component assembly dynamics and strategies in TLR4 complexes.


Asunto(s)
Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo , Receptor Toll-Like 4/metabolismo , Algoritmos , Animales , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones , Modelos Teóricos , Complejos Multiproteicos/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
8.
Angew Chem Int Ed Engl ; 59(27): 11053-11060, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32173989

RESUMEN

Mesoporous metal oxides (MMOs) have been demonstrated great potential in various applications. Up to now, the direct synthesis of MMOs is still limited to the solvent induced inorganic-organic self-assembly process. Here, we develop a facile, general, and high throughput solvent-free self-assembly strategy to synthesize a series of MMOs including single-component MMOs and multi-component MMOs (e.g., doped MMOs, composite MMOs, and polymetallic oxide) with high crystallinity and remarkable porous properties by grinding and heating raw materials. Compared with the traditional solution self-assembly process, the avoidance of solvents in this method not only greatly increases the yield of target products and synthesis efficiency, but also reduces the environmental pollution and the consumption of cost and energy. We believe the presented approach will pave a new avenue for scalable production of advanced mesoporous materials for various applications.

9.
Anal Bioanal Chem ; 411(18): 4221-4229, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31143966

RESUMEN

Herein, rare-earth europium doped in Gd2O3@SiO2-based molecularly imprinted polymer (MIP) composite nanospheres with a multilayer core-shell structure was successfully prepared via a facile and versatile layer-by-layer assembly strategy of combination with sol-gel, hydrothermal, and surface imprinting procedure. The rare-earth Gd2O3:Eu3+ was embedded into the inner portion of the imprinted polymer which was well-suited for fluorescent monitoring carbaryl selectively. Results showed that the recognition process of the nanosensor for carbaryl was fast and reached dynamic equilibrium at ca. 20 min. The fluorescence intensity (F0/F) is linearly related to the concentration of carbaryl [Q] within the range of 16-80 µg mL-1, and the linear equation is F0/F = 0.8909 - 9.775 × 10-4[Q] (R = 0.9963) with 10 µg mL-1 as the detection limit. Competition experiments showed that other analogues (methomyl, aldicarb, and isoprocarb) have nearly no interference in the detection of carbaryl. Moreover, this MIP nanosensor was successfully applied to detect carbaryl in green tea samples without pretreatment. The study afforded an efficient and desirable fluorescence sensor for carbaryl detection in a complicated matrix, which hopefully will be used for biomedical/chemical sensing recognition. Graphical abstract.


Asunto(s)
Gadolinio/química , Nanopartículas del Metal/química , Dióxido de Silicio/química , Té/química , Fluorescencia
10.
Food Res Int ; 190: 114557, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945561

RESUMEN

With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Microbiología de Alimentos/métodos , Alimentos Fermentados/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Microbiota , Consorcios Microbianos
11.
J Colloid Interface Sci ; 659: 374-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181701

RESUMEN

Lignin-derived carbon materials are widely used as electrode materials for supercapacitors. However, the electrochemical performance of these materials is limited by the surface chemistry and pore structure characteristics. Herein, a novel and sustainable strategy was proposed to prepare heteroatom-doped lignin-derived carbon material (Fe-NLC) with well-developed pore size distributions and enhanced graphitization structure via a facile lignin-Fe coordination method followed by carbonization. During carbonization, Fe3+ in lignin-metal complexes evolve into nanoparticles, which act as templates to introduce porous structures in carbon materials. Also, the lignin-Fe coordination structure endows the material with a higher graphitization during carbonization, thereby improving the structural properties of the carbon materials. Due to the removal of Fe3O4 template, the obtained Fe-NLC possessed reasonable pore distribution and nitrigen/oxygen (N/O) functional groups, which can improve the wettability of materials and introduce pseudocapacitance. Accordingly, Fe-NLC possesses a notable specific capacitance of 264 F/g at 0.5 A/g. Furthermore, a symmetric supercapacitor Fe-NLC//Fe-NLC with a high voltage window (1.8 V) was constructed. The symmetric supercapacitor exhibits a maximum energy density of 15.97 Wh/kg at 450 W/kg, demonstrating well application prospects. This paper proposes a novel approach for preparing carbon materials via lignin-metal coordination to provide an alternative way to explore sustainable and low-cost energy storage materials.

12.
J Chromatogr A ; 1713: 464504, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37979512

RESUMEN

Herein, an ionic covalent organic framework (iCOF) surface grafting monolithic sorbent was prepared by the multivariate surface self-assembly strategy for in-tube solid-phase microextraction (SPME) of trace aristolochic acids (AAs) in serum, traditional Chinese medicines (TCMs) and Chinese patent drug. Via adjusting the proportion of ionic COF building block during the self-assembly, the density of quaternary ammonium ions in the iCOF was modulated for the enhanced adsorption of AAs. The successful preparation of iCOF surface grafting monolithic sorbent was confirmed by different means. A multiple mode mechanism involving π-π stacking, hydrophobic, electrostatic and hydrogen-bonding interactions was primarily attributed to the adsorption. Several in-tube SPME operating conditions, such as the dosage of ionic COF building block, ACN percentage and TFA percentage in the sampling solution, ACN percentage and TFA percentage in eluent and the collection time span, were optimized to develop the online in-tube SPME-HPLC method for analysis of AAs. Under the optimized conditions, a good linearity was obtained in the concentration range of 20-1000 ng/mL for target AAs in serum samples, the limits of detection (LODs) were less than 10 ng/mL, while the recoveries ranged from 90.3 % to 98.7 % with RSDs (n = 5) below 7.9 %. This study developed a feasible approach to iCOF functionalized monolithic sorbent for SPME and further exhibited the vast potential for the application of COF based monolithic sorbent in sample preparation.


Asunto(s)
Ácidos Aristolóquicos , Estructuras Metalorgánicas , Cromatografía Líquida de Alta Presión , Microextracción en Fase Sólida/métodos , Límite de Detección
13.
Int J Biol Macromol ; 234: 123603, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36775225

RESUMEN

The conversion of renewable lignin with low-cost and high carbon content properties into porous carbon materials for supercapacitor applications has caught considerable interest. Herein, two dimensional lignin-derived carbon nanosheets (N-LHPC) with hierarchically porous structures were facilely synthesized via a novel metal-lignin assembly strategy and their performances for supercapacitor applications were investigated. During the carbonization process, the uniformly distributed Zn facilitates the coordinating development of micropores structure and the generated MgO embedded in the carbon matrix acts as a template to produce mesoporous structure after acid washing. Moreover, the melamine addition promotes the development of mesopores by formation of lamellae structure and realizes the N doping in the carbon materials. Therefore, the obtained N-LHPC presents an excellent specific capacitance of 235.75 F/g at 0.5 A/g owing to its hierarchical pore structure as well as the N/O functional groups. Moreover, at the power density of 450 W/kg, the N-LHPC achieves a maximum energy density of 14.75 Wh/kg, showing great application potential in energy storage. The metal-lignin assembly strategy followed by N-doping proposed in this paper provides N-LHPC materials with hierarchical nanostructure, good electron/ion transfer properties, and abundant pseudocapacitive active species, which improve the capacitance performances of the N-LHPC.


Asunto(s)
Carbono , Lignina , Porosidad , Capacidad Eléctrica , Transporte de Electrón , Metales
14.
J Control Release ; 362: 631-646, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37708976

RESUMEN

The infiltration of inflammatory cells, especially macrophages, integrated with the production of reactive oxygen and nitrogen species (RONS) and the release of inflammatory cytokines play a crucial role in the pathogenesis of rheumatoid arthritis (RA). Synergistic combination of RONS scavenging and macrophage repolarization from pro-inflammatory M1 phenotype towards anti-inflammatory M2 phenotype, provides a promising strategy for efficient RA treatment. Herein, this study reported a unique self-assembly strategy to construct distinct rosmarinic acid nanoparticles (RNPs) for efficient RA treatment using the naturally occurring polyphenol-based compound, rosmarinic acid (RosA). The designed RNPs exhibited favorable capability in scavenging RONS and pro-inflammatory cytokines produced by macrophages. Attributing to the widened vascular endothelial-cell gap at inflammation sites, RNPs could target and accumulate at the inflammatory joints of collagen-induced arthritis (CIA) rats for guaranteeing therapeutic effect. In vivo investigation demonstrated that RNPs alleviated the symptoms of RA, including joint swelling, synovial hyperplasia, cartilage degradation, and bone erosion in CIA rats. Additionally, the designed RNPs promoted macrophage polarization from M1 phenotype towards M2 phenotype, resulting in the suppressed progression of RA. Therefore, this research represents the representative paradigm for RA therapy using antioxidative nanomedicine deriving from the natural polyphenol-based compound.

15.
Adv Healthc Mater ; 12(26): e2300883, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437241

RESUMEN

The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general ß-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Oro , Dopamina/uso terapéutico , Hipertermia Inducida/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
16.
Regen Biomater ; 10: rbad016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020751

RESUMEN

Owing to their high-specific binding toward targets as well as fast and convenient separation operations, immunomagnetic beads (IMBs) are widely used in the capture and detection of circulating tumor cells (CTCs). To construct the IMBs, surface modifications are generally performed to functionalize the magnetic cores (e.g. Fe3O4 nanoparticles), and the employed surface modification strategies normally influence the structure and functions of the prepared IMBs in return. Different from the existing work, we proposed the use of supramolecular layer-by-layer (LBL) self-assembly strategy to construct the IMBs. In general, owing to the π-π stacking interactions, the polydopamine, graphene oxide and 'molecular glue' γ-oxo-1-pyrenebutyric acid were self-assembled on Fe3O4 nanoparticles sequentially, thereby accomplishing the integration of different functional components onto magnetic cores to prepare the self-assembled supramolecular immunomagnetic beads (ASIMBs). The ASIMBs showed high sensitivity, specificity and good biocompatibility to the model CTCs and low nonspecific adsorption to the negative cells (∼93% for MCF-7 cells and 17% for Jurkat cells). Meanwhile, ASIMBs possessed a remarkable potential to screen the rare MCF-7 cells out of large amounts of interfering Jurkat cells with the capture efficiency of 75-100% or out of mouse whole blood with the capture efficiency of 20-90%. The captured cells can be further recultured directly without any more treatment, which showed huge applicability of the ASIMBs for in vitro detection in clinical practices.

17.
J Colloid Interface Sci ; 629(Pt A): 706-722, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36099840

RESUMEN

For the first time, a nanosheet-state CoMnx mixed oxide with multifarious active regions was synthesized by oxidation-etching assembly of metal organic framework (MOF) precursor and applied for catalytic combustion of toluene at low temperatures. The obtained optimum catalyst denoted as CoMn6 showed excellent performance, which achieved 90% conversion of 1,000 ppm toluene under a weight hourly space velocity (WHSV) of 60,000 mL/(g·h) at 219 °C. While, it also exhibited long-term stability with strong water resistance property. The characterizations of physicochemical properties indicated that the oxidation-etching assembly process built an abundant mesoporous structure in the CoMnx catalyst, which greatly increased the specific surface area (SSA). Especially, potassium permanganate as oxidant and manganese source led to uniform dispersion and assembling of cobalt atoms, which caused the generation of low-crystallinity CoMnx mixed oxide with abundant dislocations, vacancies, phase interfaces and amorphous structures, resulting in excellent low-temperature reducibility, outstanding lattice oxygen mobility and abundant active species such as Mn3+, Co3+ and adsorbed oxygen species. Density functional theory (DFT) calculations demonstrated that gaseous oxygen with the longer bond length (1.406 Å) and stronger adsorption energy (-4.443 eV) could be adsorbed and activated well on the MnCo2O4.5 (311) plane, which is beneficial for the toluene oxidation. In situ diffuse reflectance infrared spectroscopy (DRIFTS) technique was applied to track the intermediates of toluene combustion under different atmospheres, which further deduced the contributions of different active regions and oxidation mechanism over the CoMnx catalyst. The present facile strategy of oxidation-etching assembly of the MOF precursor for the creating of novel catalyst with high performance could be applied in a wide variety of materials besides VOC combustion catalysts.

18.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080000

RESUMEN

The electrocatalytic nitrogen reduction reaction (NRR) can use renewable electricity to convert water and N2 into NH3 under normal temperature and pressure conditions. However, due to the competitiveness of the hydrogen evolution reaction (HER), the ammonia production rate (RNH3) and Faraday efficiency (FE) of NRR catalysts cannot meet the needs of large-scale industrialization. Herein, by assembling hydrophobic ZIF-8 on a cerium oxide (CeO2) nanorod, we designed an excellent electrocatalyst CeO2-ZIF-8 with intrinsic NRR activity. The hydrophobic ZIF-8 surface was conducive to the efficient three-phase contact point of N2 (gas), CeO2 (solid) and electrolyte (liquid). Therefore, N2 is concentrated and H+ is deconcentrated on the CeO2-ZIF-8 electrocatalyst surface, which improves NRR and suppresses HER and finally CeO2-ZIF-8 exhibits excellent NRR performance with an RNH3 of 2.12 µg h-1 cm-2 and FE of 8.41% at -0.50 V (vs. RHE). It is worth noting that CeO2-ZIF-8 showed excellent stability in the six-cycle test, and the RNH3 and FE variation were negligible. This study paves a route for inhibiting the competitive reaction to improve the NRR catalyst activity and may provide a new strategy for NRR catalyst design.

19.
ACS Nano ; 15(10): 16030-16042, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544242

RESUMEN

Effectively activating macrophages that can engulf cancer cells is a promising immunotherapeutic strategy but remains a major challenge due to the expression of "self" signals (e.g., CD47 molecules) by tumor cells to prevent phagocytosis. Herein, we explored a siRNA-assisted assembly strategy for the simultaneous delivery of siRNA and mitoxantrone hydrochloride (MTO·2HCl) via PLGA-based nanoparticles. The siRNA suppressed a "self" signal by silencing the CD47 gene, while the MTO induced surface exposure of calreticulin (CRT) to provide an "eat-me" signal. The siRNA-assisted assembly strategy synergistically increased the phagocytosis of tumor cells by macrophages, promoted effective antigen presentation, and initiated T cell-mediated immune responses in two aggressive tumor animal models of melanoma and colon cancer, eventually achieving significantly improved antitumor activity. This study provides a straightforward codelivery strategy to simultaneously suppress "self" and upregulate "eat-me" signals to potentiate macrophage-mediated immunotherapy.


Asunto(s)
Neoplasias , Receptores Inmunológicos , Animales , Antígeno CD47 , Inmunoterapia , Neoplasias/tratamiento farmacológico , Fagocitosis , ARN Interferente Pequeño
20.
ACS Appl Mater Interfaces ; 13(25): 29726-29736, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34137583

RESUMEN

The low-cost and high-capacity micron silicon is identified as the suitable anode material for high-performance lithium-ion batteries (LIBs). However, the particle fracture and severe capacity fading during electrochemical cycling greatly impede the practical application of LIBs. Herein, we first proposed an in situ reduction and template assembly strategy to attain a weave cage-like carbon nanostructure, composed of short carbon nanotubes and small graphene flakes, as a flexible nanotemplate that closely wrapped micron-sized mesoporous silicon (PSi) to form a robust composite construction. The in situ formed weave cage-like carbon nanostructure can remarkably improve the electrochemical property and structural stability of micron-sized PSi during deep galvanostatic cycling and high electric current density owing to multiple attractive advantages. As a result, the rechargeable LIB applying this anode material exhibits improved initial Coulombic efficiency (ICE), excellent rate performance, and cyclic stability in the existing micron-sized PSi/nanocarbon system. Moreover, this anode reached an approximation of 100% ICE after only three cycles and maintains this level in subsequent cycles. This design of flexible nanotemplated platform wrapped micron-sized PSi anode provides a steerable nanoengineering strategy toward conquering the challenge of long-term reliable LIB application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA