Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 295(47): 15853-15869, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32816992

RESUMEN

Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula: see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.


Asunto(s)
Proteínas Aviares/metabolismo , Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Pollos/metabolismo , Cáscara de Huevo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Animales , Cáscara de Huevo/ultraestructura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino
2.
J Biol Chem ; 294(40): 14526-14545, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31358619

RESUMEN

The avian eggshell is a critical physical barrier, which permits extra-uterine development of the embryo. Its formation involves the fastest known biomineralization process in vertebrates. The eggshell consists of proteins and proteoglycans that interact with the mineral phase to impart its specific microstructure and mechanical properties. In this study, we investigated the role of epidermal growth factor (EGF)-like repeats and discoidin-like domains 3 (EDIL3) and milk fat globule-EGF factor 8 (MFGE8), two glycoproteins that are consistently detected in eggshell proteomes. We verified their common evolutionary history and identified the timing of the duplication event giving rise to these two distinct proteins. Edil3/mfge8 chromosomal locations revealed a nested syntenous relationship with other genes (hapln1/hapln3 and vcan/acan) that are also involved in vertebrate calcification. EDIL3 and MFGE8 proteins possess EGF-like and coagulation factor 5/8 (F5/8C) domains, and their 3D structures predicted that they bind calcium and extracellular vesicles. In chicken, we confirmed the presence of EDIL3 and MFGE8 proteins in eggshell, uterine fluid, and uterus. We observed that only edil3 is overexpressed in tissues in which eggshell mineralization takes place and that this overexpression occurs only at the onset of shell calcification. We therefore propose a model in which EDIL3 and, to a lesser extent, MFGE8 proteins guide vesicles containing amorphous calcium carbonate to the mineralization site. This model was supported by the observation that extracellular vesicles accumulate in uterine fluid during eggshell calcification and that they contain high levels of calcium, carbon, and oxygen that correspond to calcium carbonate.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cáscara de Huevo/metabolismo , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Proteínas de la Leche/metabolismo , Animales , Antígenos de Superficie/química , Antígenos de Superficie/genética , Biomineralización/genética , Calcificación Fisiológica/genética , Carbonato de Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Pollos/genética , Pollos/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Glucolípidos/química , Glucolípidos/genética , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Gotas Lipídicas , Proteínas de la Leche/química , Proteínas de la Leche/genética , Proteoma/genética , Proteómica/métodos , Útero/metabolismo
3.
Biosystems ; 240: 105234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759750

RESUMEN

Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers. These results not only suggest that an eggshell membrane with multiple layers and low porosity indicates high antimicrobial performance, but also imply that the fibrous network structure of the membrane might contribute to effective defense. Our simulation results aligned with experimental findings, specifically in measuring the penetration time of Escherichia coli through the eggshell membrane. We briefly discuss the significance and limitations of this pilot study, as well as the potential for these results, to serve as a foundation for the development of antimicrobial materials.


Asunto(s)
Cáscara de Huevo , Escherichia coli , Cáscara de Huevo/microbiología , Animales , Escherichia coli/fisiología , Simulación por Computador , Modelos Biológicos , Membranas/metabolismo , Aves , Modelos Teóricos
4.
Ecol Evol ; 13(9): e10546, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745787

RESUMEN

Phenotypic plasticity is an important avenue by which organisms may persist in the face of rapid environmental change. Environmental cues experienced by the mother can also influence the phenotype of offspring, a form of plasticity called maternal effects. Maternal effects can adaptively prepare offspring for the environmental conditions they will likely experience; however, their ability to buffer offspring against environmental stressors as embryos is understudied. Using captive zebra finches, we performed a maternal-offspring environmental match-mismatch experiment utilizing a 2 × 2 × 2 factorial design. Mothers were exposed to a mild heat conditioning (38°C) or control (22°C) treatment as juveniles, an acute high heat (42°C) or control (22°C) treatment as adults, then paired for breeding. The eggs produced by those females were incubated at a hyperthermic (38.5°C) or optimal temperature (37.2°C). We found that when mothers were exposed to a mild heat conditioning as juveniles, their embryos exhibited reduced water loss, longer development times, and produced hatchlings with heavier pectoralis muscles when incubated at high incubation temperatures, compared to embryos from control mothers. Mothers exposed to both the mild heat conditioning as juveniles and a high heat stressor as adults produced eggs with a higher density of shell pores and embryos with lower heart rates during development. However, there was a cost when there was a mismatch between maternal and embryo environment. Embryos from these conditioned and heat-stressed mothers had reduced survival at control incubation temperatures, indicating the importance of offspring environment when interpreting potential adaptive effects.

5.
Biology (Basel) ; 10(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34681088

RESUMEN

We analyze 700 freshly-laid eggs from 58 species (22 families and 13 orders) across three orders of magnitude in egg mass. We study the elastic moduli using three metrics: (i) effective Young's modulus, EFEM, by a combined experimental and numerical method; (ii) elastic modulus, Enano, by nanoindentation, and (iii) theoretical Young's modulus, Etheory. We measure the mineral content by acid-base titration, and crystallographic characteristics by electron backscatter diffraction (EBSD), on representative species. We find that the mineral content ranges between 83.1% (Zebra finch) and 96.5% (ostrich) and is positively correlated with EFEM-23.28 GPa (Zebra finch) and 47.76 GPa (ostrich). The EBSD shows that eggshell is anisotropic and non-homogeneous, and different species have different degrees of crystal orientation and texture. Ostrich eggshell exhibits strong texture in the thickness direction, whereas chicken eggshell has little. Such anisotropy and inhomogeneity are consistent with the nanoindentation tests. However, the crystal characteristics do not appear to correlate with EFEM, as EFEM represents an overall "average" elasticity of the entire shell. The experimental results are consistent with the theoretical prediction of linear elasticity. Our comprehensive investigation into the elastic moduli of avian eggshell over broad taxonomic scales provides a useful dataset for those who work on avian reproduction.

6.
J Mech Behav Biomed Mater ; 110: 103888, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32957195

RESUMEN

In order to understand the fracture toughness anisotropy of avian eggshells, we have investigated eggshells of the emu (Dromaius novaehollandiae) whereby the large size (~13 cm × 9.5 cm) enabled the fabrication of beam samples in various orientations. The emu eggshell was found to have a hierarchical microstructure similar to chicken eggshell, with the only significant difference being the absence of a continuous cuticle layer. Emu eggshell was found to have significantly lower strength when samples were tested in the outwards direction (i.e., a crack initiates on the inside of the shell and propagates towards the outer surface) as compared to the inwards testing direction. Furthermore, samples that were oriented parallel to the egg axis (i.e., the longitudinal direction) and tested inwards showed higher strength, ~24 MPa, compared to the samples that were made from the latitudinal orientation, ~20 MPa. Independent of orientation, the outwards testing direction resulted in strength values of ~15 MPa. The fracture toughness of the emu eggshell for cracking in the circumferential direction was ~0.3 MPa√m, independent of sample orientation, and this value was comparable to the fracture toughness of chicken eggshell tested in the same orientation. In the radial outwards direction, however, the fracture toughness was ~80% lower (~0.06 MPa√m) than in the circumferential direction. The low fracture toughness for this orientation was associated with the separation of the highly oriented calcite crystals in the mammillary cone layer of the eggshell structure which is easier compared to calcite crystal fracture. The large anisotropy in fracture toughness is thought to allow for easy escape of the chick while simultaneously protecting the embryo during development.


Asunto(s)
Cáscara de Huevo , Fracturas Óseas , Animales , Anisotropía , Carbonato de Calcio , Pollos
7.
Zoology (Jena) ; 119(1): 52-63, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26711013

RESUMEN

The structure and composition of the eggshells of two commercial species (guinea fowl and greylag goose) have been studied. Thin sections and scanning electron microcopy show the similarity of the overall structure, but the relative thickness of the layers differs in these two taxa. Atomic force microscopy shows that the different layers are composed of rounded, heterogeneous granules, the diameter of which is between 50 and 100 nm, with a thin cortex. Infrared data and thermogravimetric analyses show that both eggshells are made of calcite, but differing on the quality and quantity when the organic component is considered. Chemical maps show that chemical element distribution is not uniform within a sample, and differs between the species, but with low magnesium content. Electron back scattered diffraction confirms the eggshells are calcite, but the microtexture strongly differs between the two species. Based on the chemical-structural differences, a species-specific biological control on the biomineralization is found, despite the rapid formation of an eggshell. Overall results indicate that to estimate the quality of eggshells, such as resistance to breakage, is not a straightforward process because of the high complexity of avian eggshell biomineralization.


Asunto(s)
Cáscara de Huevo/química , Cáscara de Huevo/ultraestructura , Galliformes/anatomía & histología , Gansos/anatomía & histología , Animales , Cristalografía , Cáscara de Huevo/anatomía & histología , Galliformes/metabolismo , Gansos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA