Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(41): e2204636119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36197996

RESUMEN

Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto chromosome ends to maintain genomic stability and confer cellular immortality in cancer and stem cells. The telomerase RNA (TER) component is essential for telomerase catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of transcription machinery and processing pathways. In ciliates and plants, TERs are transcribed by RNA polymerase III (Pol III), while animal and ascomycete fungal TERs are transcribed by RNA Pol II and share biogenesis pathways with small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA), respectively. Here, we report an unprecedented messenger RNA (mRNA)-derived biogenesis pathway for the 1,291 nucleotide TER from the basidiomycete fungus Ustilago maydis. The U. maydis TER (UmTER) contains a 5'-monophosphate, distinct from the 5' 2,2,7-trimethylguanosine (TMG) cap common to animal and ascomycete fungal TERs. The mature UmTER is processed from the 3'-untranslated region (3'-UTR) of a larger RNA precursor that possesses characteristics of mRNA including a 5' 7-methyl-guanosine (m7G) cap, alternative splicing of introns, and a poly(A) tail. Moreover, this mRNA transcript encodes a protein called Early meiotic induction protein 1 (Emi1) that is conserved across dikaryotic fungi. A recombinant UmTER precursor expressed from an mRNA promoter is processed correctly to yield mature UmTER, confirming an mRNA-processing pathway for producing TER. Our findings expand the plethora of TER biogenesis mechanisms and demonstrate a pathway for producing a functional long noncoding RNA from a protein-coding mRNA precursor.


Asunto(s)
ARN Largo no Codificante , Telomerasa , Animales , Guanosina , Nucleótidos/metabolismo , ARN/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa III/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Nucleolar Pequeño , Ribonucleoproteínas/genética , Telomerasa/genética , Telomerasa/metabolismo , Regiones no Traducidas
2.
Proc Natl Acad Sci U S A ; 119(46): e2208575119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343254

RESUMEN

Genetic variability can be generated by different mechanisms, and across the life cycle. Many basidiomycete fungi have an extended somatic stage, during which each cell carries two genetically distinct haploid nuclei (dikaryosis), resulting from fusion of two compatible monokaryotic individuals. Recent findings have revealed remarkable genome stability at the nucleotide level during dikaryotic growth in these organisms, but whether this pattern extends to mutations affecting large genomic regions remains unknown. Furthermore, despite high genome integrity during dikaryosis, basidiomycete populations are not devoid of genetic diversity, begging the question of when this diversity is introduced. Here, we used a Marasmius oreades fairy ring to investigate the rise of large-scale variants during mono- and dikaryosis. By separating the two nuclear genotypes from four fruiting bodies and generating complete genome assemblies, we gained access to investigate genomic changes of any size. We found that during dikaryotic growth in nature the genome stayed intact, but after separating the nucleotypes into monokaryons, a considerable amount of structural variation started to accumulate, driven to large extent by transposons. Transposon insertions were also found in monokaryotic single-meiospore isolates. Hence, we show that genome integrity in basidiomycetes can be interrupted during monokaryosis, leading to genomic rearrangements and increased activity of transposable elements. We suggest that genetic diversification is disproportionate between life cycle stages in mushroom-forming fungi, so that the short-lived monokaryotic growth stage is more prone to genetic changes than the dikaryotic stage.


Asunto(s)
Agaricales , Basidiomycota , Marasmius , Humanos , Animales , Basidiomycota/genética , Agaricales/genética , Estadios del Ciclo de Vida
3.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503389

RESUMEN

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Meiosis , Pleurotus , Esporas Fúngicas , Pleurotus/genética , Pleurotus/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Meiosis/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Esenciales/genética , Transcriptoma/genética
4.
Fungal Genet Biol ; 172: 103893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657898

RESUMEN

Chitin is an essential structural component of fungal cell walls composed of transmembrane proteins called chitin synthases (CHSs), which have a large range of reported effects in ascomycetes; however, are poorly understood in agaricomycetes. In this study, evolutionary and molecular genetic analyses of chs genes were conducted using genomic information from nine ascomycete and six basidiomycete species. The results support the existence of seven previously classified chs clades and the discovery of three novel basidiomycete-specific clades (BI-BIII). The agaricomycete fungus Pleurotus ostreatus was observed to have nine putative chs genes, four of which were basidiomycete-specific. Three of these basidiomycete specific genes were disrupted in the P. ostreatus 20b strain (ku80 disruptant) through homologous recombination and transformants were obtained (Δchsb2, Δchsb3, and Δchsb4). Despite numerous transformations Δchsb1 was unobtainable, suggesting disruption of this gene causes a crucial negative effect in P. ostreatus. Disruption of these chsb2-4 genes caused sparser mycelia with rougher surfaces and shorter aerial hyphae. They also caused increased sensitivity to cell wall and membrane stress, thinner cell walls, and overexpression of other chitin and glucan synthases. These genes have distinct roles in the structural formation of aerial hyphae and cell walls, which are important for understanding basidiomycete evolution in filamentous fungi.


Asunto(s)
Quitina Sintasa , Quitina , Proteínas Fúngicas , Filogenia , Pleurotus , Quitina Sintasa/genética , Pleurotus/genética , Pleurotus/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Quitina/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Evolución Molecular , Basidiomycota/genética , Basidiomycota/enzimología
5.
Mol Biol Rep ; 51(1): 212, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273212

RESUMEN

BACKGROUND: Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.


Asunto(s)
Arecaceae , Ganoderma , Micotoxinas , Arecaceae/genética , Arecaceae/metabolismo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Ganoderma/genética , Micotoxinas/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 37, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183476

RESUMEN

A comprehensive analysis to survey heme-binding proteins produced by the white-rot fungus Phanerochaete chrysosporium was achieved using a biotinylated heme-streptavidin beads system. Mitochondrial citrate synthase (PcCS), glyceraldehyde 3-phosphate dehydrogenase (PcGAPDH), and 2-Cys thioredoxin peroxidase (mammalian HBP23 homolog) were identified as putative heme-binding proteins. Among these, PcCS and PcGAPDH were further characterized using heterologously expressed recombinant proteins. Difference spectra of PcCS titrated with hemin exhibited an increase in the Soret absorbance at 414 nm, suggesting that the axial ligand of the heme is a His residue. The activity of PcCS was strongly inhibited by hemin with Ki oxaloacetate of 8.7 µM and Ki acetyl-CoA of 5.8 µM. Since the final step of heme biosynthesis occurred at the mitochondrial inner membrane, the inhibition of PcCS by heme is thought to be a physiological event. The inhibitory mode of the heme was similar to that of CoA analogues, suggesting that heme binds to PcCS at His347 at the AcCoA-CoA binding site, which was supported by the homology model of PcCS. PcGAPDH was also inhibited by heme, with a lower concentration than that for PcCS. This might be caused by the different location of these enzymes. From the integration of these phenomena, it was concluded that metabolic regulations by heme in the central metabolic and heme synthetic pathways occurred in the mitochondria and cytosol. This novel pathway crosstalk between the central metabolic and heme biosynthetic pathways, via a heme molecule, is important in regulating the metabolic balance (heme synthesis, ATP synthesis, flux balance of the tricarboxylic acid (TCA) cycle and cellular redox balance (NADPH production) during fungal aromatic degradation. KEY POINTS: • A comprehensive survey of heme-binding proteins in P. chrysosporium was achieved. • Several heme-binding proteins including CS and GAPDH were identified. • A novel metabolic regulation by heme in the central metabolic pathways was found.


Asunto(s)
Vías Biosintéticas , Phanerochaete , Animales , Hemo , Phanerochaete/genética , Hemina , Proteínas de Unión al Hemo , Mamíferos
7.
J Basic Microbiol ; 64(8): e2400080, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031570

RESUMEN

Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.


Asunto(s)
Antifúngicos , Antioxidantes , Basidiomycota , Endófitos , Filogenia , Hojas de la Planta , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/fisiología , Endófitos/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Basidiomycota/efectos de los fármacos , Hojas de la Planta/microbiología , Antifúngicos/farmacología , Antifúngicos/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/farmacología , Aspergillus/metabolismo , Aspergillus/efectos de los fármacos , India , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/metabolismo , Aspergillus flavus/crecimiento & desarrollo , ADN de Hongos/genética , Simbiosis
8.
World J Microbiol Biotechnol ; 40(10): 309, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179751

RESUMEN

Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.


Asunto(s)
Biodegradación Ambiental , Lacasa , Pleurotus , Polietileno , Rayos Ultravioleta , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Polietileno/química , Polietileno/metabolismo , Lacasa/metabolismo , Fermentación , Reciclaje , Biomasa , Peroxidasas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
9.
BMC Genomics ; 24(1): 123, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927388

RESUMEN

BACKGROUND: The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. METHODS: To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. RESULTS: Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. CONCLUSIONS: The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.


Asunto(s)
Isópteros , Termitomyces , Animales , Isópteros/genética , Isópteros/microbiología , Termitomyces/genética , Hongos/genética , Genómica , Simbiosis/genética , Ligamiento Genético
10.
Artículo en Inglés | MEDLINE | ID: mdl-36815562

RESUMEN

During a survey of floricolous yeasts in Portugal, a basidiomycetous yeast representing a novel species in the genus Hannaella was isolated in Portugal from the flower of Lantana camara, an ornamental exotic species native to Central and South America. A combination of phylogenetic analyses of DNA barcode sequences used in yeast molecular systematics, namely the D1/D2 domain and the complete internal transcribed spacer (ITS) region supported the recognition of a new species of Hannaella, that we designate Hannaella floricola sp. nov. (ex-type strain PYCC 9191T=CBS 18097T). Although the assignment of the new species to the genus Hannaella was evident, the detection of its closest relatives appeared more problematic. Nevertheless, our analyses suggested that H. floricola sp. nov. belongs a clade that also includes H. coprosmae, H. oryzae and H. surugaensis, together four candidate novel species. In addition we provide the molecular identification of several unidentified strains whose D1/D2 and ITS sequences are available from GenBank.


Asunto(s)
Ascomicetos , Basidiomycota , Lantana , ADN de Hongos/genética , Lantana/genética , Filogenia , Portugal , ADN Espaciador Ribosómico/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Ascomicetos/genética , Flores
11.
Photochem Photobiol Sci ; 22(3): 669-686, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36417143

RESUMEN

The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the ß-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.


Asunto(s)
Antiinfecciosos , Basidiomycota , Lentinula , Antioxidantes/farmacología , Antioxidantes/metabolismo , Biomasa , Lentinula/metabolismo , Basidiomycota/metabolismo , Fenoles/metabolismo
12.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005237

RESUMEN

Chanterelles are one of the most highly valued wild edible mushroom genera worldwide. This work aimed to investigate the nutritional characteristics and volatile compounds' profile of Cantharellus alborufescens for the first time. Proximate analysis was performed according to the Association of Official Agricultural Chemists, while the mineral contents and the volatile compounds were determined using ICP-MS and GC-MS, respectively. C. alborufescens had an average of 25.8% protein, 5.5% fat, 12.7% ash, and 55.9% carbohydrates, including 11.4% fiber per dw of mushroom. Further analyses of the fat and protein contents revealed high amounts of polyunsaturated fatty acids as well as monosodium glutamate-like amino acids. Linoleic acid (42.0% of fat) and oleic acid (28.6% of fat) were the major fatty acids, while leucine (1.2%) and lysine (0.9%) were the most abundant essential amino acids. The results showed that C. alborufescens contained 3.1 µg/g vitamin D2 and 4.9 mg/g vitamin E per dw, as well as notable quantities of macro- and microelements, such as potassium, calcium, magnesium, and iron. GC-MS analysis revealed various volatile compounds such as acetaldehyde, n-hexanal, 3-methylbutanal, 1-octen-3-ol, etc. In conclusion, this study supports the use of C. alborufescens as a food rich in fiber and vitamin E, with a suitable amount of protein and other nutrients.


Asunto(s)
Agaricales , Agaricales/química , Odorantes/análisis , Ácidos Grasos , Vitamina E
13.
J Clin Immunol ; 42(7): 1411-1419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35696001

RESUMEN

PURPOSE: Chronic granulomatous disease (CGD) is an uncommon, inborn error of immunity. We updated our large, single-center US experience with CGD and describe some newly recognized features. METHODS: We retrospectively reviewed 26 patients seen from November 2013 to December 2019. Serious infections required intravenous antibiotics or hospitalization. RESULTS: There were 21 males and 5 females. The most frequent infectious agents at presentation were aspergillus (4), serratia (4), burkholderia (2), Staphylococcus aureus (2), and klebsiella (2). The most common serious infections at presentation were pneumonia (6), lymphadenitis (6), and skin abscess (3). Our serious infection rate was 0.2 per patient-year from December 2013 through November 2019, down from 0.62 per patient-year from the previous study period (March 1985-November 2013). In the last 6 years, four patients were evaluated for human stem cell transplantation, two were successfully transplanted, and we had no deaths. Several patients had unusual infections or autoimmune manifestations of disease, such as pneumocystis pneumonia, basidiomycete/phellinus fungal pneumonia, and retinitis pigmentosa. We included one carrier female with unfavorable Lyonization in our cohort. CONCLUSION: We update of a large US single-center experience with CGD and describe some recently identified features of the illness.


Asunto(s)
Enfermedad Granulomatosa Crónica , Linfadenitis , Micosis , Neumonía , Masculino , Humanos , Femenino , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/epidemiología , Enfermedad Granulomatosa Crónica/terapia , Estudios Retrospectivos
14.
Appl Microbiol Biotechnol ; 106(17): 5575-5585, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902408

RESUMEN

Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Plásmidos , Polyporales , ARN Pequeño no Traducido/genética
15.
Biosci Biotechnol Biochem ; 86(3): 300-304, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34962978

RESUMEN

A new acetyl p-terphenyl derivative, boletopsin 15, was isolated from the ethyl acetate extract of fruit bodies of the Basidiomycete Boletopsis leucomelas, together with 4 known compounds. The structures of these compounds were elucidated by spectral analysis as well as by directly comparing the spectral data of the new compound with those of known compounds. The free radical-scavenging activity of the compounds was assayed using the 2,2-diphenyl-1-picrylhydrazyl scavenging method. The results showed that compounds 1 and 2 exhibited significant antioxidant activity (1: EC50 = 2.1 µm and 2: EC50 = 6.6 µm).


Asunto(s)
Agaricales
16.
Biochem Biophys Res Commun ; 544: 86-90, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33550013

RESUMEN

The fungal species Rhizoctonia solani belongs to the Basidiomycota division and is a ubiquitous soil-borne pathogen. It is the main agent of the damping-off disease in seedlings and causes the root and crown rot disease in sugar beets. Plant pathogens deploy small secreted proteins, called effectors, to manipulate plant immunity in order to infect the host. Here, a gene (RsCRP1) encoded a putative effector cysteine-rich protein was cloned, expressed in Cercospora beticola and used for virulence assays. The RsCRP1 gene was highly induced upon the early-infection stage of sugar beet seedlings and disease was promoted. Confocal microscopy demonstrated localization to the chloroplasts and mitochondria upon transient expression of RsCRP1 in leaves of Nicotiana benthamiana. Further, this effector was unable to induce necrosis or to suppress hypersensitive response induced by the Avr4/Cf4 complex in N. benthamiana. Overall, these data indicate that RsCRP1 is a novel effector targeting distinct plant cell organelles in order to facilitate a successful infection at the early stages of the disease development.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Cloroplastos/metabolismo , Mitocondrias/metabolismo , Enfermedades de las Plantas/microbiología , Rhizoctonia/patogenicidad , Plantones/crecimiento & desarrollo , Factores de Virulencia/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/microbiología , Cloroplastos/microbiología , Mitocondrias/microbiología , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Plantones/metabolismo , Plantones/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
17.
Fungal Genet Biol ; 147: 103507, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383191

RESUMEN

Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Lignina/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Proteínas Fúngicas/metabolismo , Expresión Génica , Madera/microbiología
18.
Fungal Genet Biol ; 154: 103599, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153439

RESUMEN

Understanding the molecular mechanisms controlling dikaryon formation in Agaricomycetes, which is basically controlled by A and B mating-type loci, contributes to improving mushroom cultivation and breeding. In Coprinopsis cinerea, various mutations in the SRY-type high mobility group protein-encoding gene, pcc1, were shown to activate the A-regulated pathway to induce pseudoclamp (clamp cells without clamp connection) and fruiting body formation in monokaryons. The formation of clamp cells was blocked in AmutBmut strain 326 with clp1-1 mutation in C. cinerea. However, considering the diverse mechanisms of sexual development among Agaricomycetes, it remains unclear whether similar phenotypes are also observed in clp1 or pcc1 mutants in cultivated mushrooms. Therefore, phenotypic analyses of Pleurotus ostreatus pcc1 or clp1 (Popcc1 or Poclp1) mutants generated using CRISPR/Cas9 were performed in this study. Plasmids with Cas9 expression cassette and different single guide RNAs targeting Popcc1 or Poclp1 were individually introduced into a monokaryotic P. ostreatus strain PC9 to obtain the mutants. Unlike in C. cinerea, the pseudoclamp cell was not observed in monokaryotic Popcc1 mutants, but it was observed after crossing two compatible strains with Popcc1 mutations. In Poclp1 mutants, dikaryosis was impaired as clamp cells were not observed after crossing, suggesting that Poclp1 functions may be essential for clamp cell formation, like in C. cinerea. These results provided a clue with respect to conserved and diverse mechanisms underlying sexual development in Agaricomycetes (at least between C. cinerea and P. ostreatus).


Asunto(s)
Proteínas Fúngicas/genética , Pleurotus/genética , Sistemas CRISPR-Cas , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos
19.
Infection ; 49(4): 775-779, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33156492

RESUMEN

BACKGROUND: The pathogenic fungus Schizophyllum sp. can cause allergic fungal rhinosinusitis and allergic bronchopulmonary mycosis in humans. Sinus and lung infections due to Schizophyllum sp. have been reported globally; however, no case of hypertrophic pachymeningitis due to this pathogen has been reported yet. Herein, we describe for the first time, a case of hypertrophic pachymeningitis due to Schizophyllum sp. CASE PRESENTATION: A 69-year-old woman visited the hospital with chief complaints of headache, right trigeminal neuralgia (third branch), ataxic gait, and deafness in the right ear. Magnetic resonance imaging revealed a tumor in the right sphenoidal sinus and thickening of the dura mater surrounding the right porus acusticus internus. Endoscopic sinus surgery and neuroendoscopic biopsy were performed to remove sinus lesions and intracranial lesions, respectively. Both pathological specimens showed findings indicative of filamentous fungi on Grocott's staining. DNA sequencing with the sinus specimen revealed Schizophyllum sp. as the causative pathogen, consistent with the diagnosis of fungal sinusitis and hypertrophic pachymeningitis. Intravenous liposomal amphotericin B was started, but owing to lack of improvement, the treatment was switched to intravenous voriconazole. We observed improvements in both radiological findings and symptoms. However, the symptoms exacerbated again when the trough level of voriconazole decreased. Upon increasing the voriconazole dose, a higher trough level was obtained and the symptoms improved. CONCLUSION: Our study suggests that when symptoms of central nervous system infection due to Schizophyllum sp. do not improve with liposomal amphotericin B, voriconazole can be administered at high trough levels to improve the symptoms.


Asunto(s)
Meningitis , Micosis , Schizophyllum , Sinusitis , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Meningitis/diagnóstico , Meningitis/tratamiento farmacológico , Sinusitis/diagnóstico , Sinusitis/tratamiento farmacológico , Voriconazol
20.
Mol Biol Rep ; 48(12): 7921-7932, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34655406

RESUMEN

BACKGROUND: Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia. Compatible haploid sporidia representing opposite mating types (MAT-1 and MAT-2) of the fungus fuse to form infective dikaryotic mycelia in the host tissues, leading to the development of a characteristic whip shaped sorus. In this study, the transition of distinct stages of in vitro life cycle and in planta developmental stages of S. scitamineum are presented by generating stable GFP transformants of S. scitamineum. METHODS AND RESULTS: Haploid sporidia were isolated from the teliospores of Ss97009, and the opposite mating types (MAT-1 and MAT-2) were identified by random mating assay and mating type-specific PCR. Both haploid sporidia were individually transformed with pNIIST plasmid, harboring an enhanced green fluorescent protein (eGFP) gene and hygromycin gene by a modified protoplast-based PEG-mediated transformation method. Thereafter, the distinct in vitro developmental stages including fusion of haploid sporidia and formation of dikaryotic mycelia expressing GFP were demonstrated. To visualize in planta colonization, transformed haploids (MAT-1gfp and MAT-2gfp) were fused and inoculated onto the smut susceptible sugarcane cultivar, Co 97009 and examined microscopically at different stages of colonization. GFP fluorescence-based analysis presented an extensive fungal colonization of the bud surface as well as inter- and intracellular colonization of the transformed S. scitamineum in sugarcane tissues during initial stages of disease development. Noticeably, the GFP-tagged S. scitamineum led to the emergence of smut whips, which established their pathogenicity, and demonstrated initial colonization, active sporogenesis and teliospore maturation stages. CONCLUSION: Overall, for the first time, an efficient protoplast-based transformation method was employed to depict clear-cut developmental stages in vitro and in planta using GFP-tagged strains for better understanding of S. scitamineum life cycle development.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Saccharum/crecimiento & desarrollo , Saccharum/genética , Basidiomycota/metabolismo , Basidiomycota/patogenicidad , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/microbiología , Protoplastos , Saccharum/microbiología , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA