RESUMEN
Little or no information is available concerning online high-performance liquid chromatography (HPLC) antioxidants and the antibiofilm effect of Leonurus cardiaca. Five distinct extractions of methanolic, ethyl acetate, dichloromethane, hexane, and water were obtained from L. cardiaca. In the online-HPLC-antioxidant analysis of all examined samples, rosmarinic acid emerged as the primary antioxidant, registering concentrations ranging from 6 to 15 ppm at wavelengths of 517 and 734 nm. Notably, the water extract exhibited robust antioxidant activity In vitro. Regarding acetylcholinesterase and butrylcholinesterase inhibition, the n-hexane extract exhibited superior inhibition with values of 3.08 and 5.83 galanthamine equivalent, respectively. Except for the water extract, all tested extracts (at a concentration of 20 µg/mL) exhibited substantial inhibitory activity against biofilm formation, in many cases superior to 80%, and reached even 94.52% against Escherichia coli. Although less vigorous, the extracts also acted against the mature biofilm (inhibition up 76.50% against Staphylococcus aureus). They could work against the metabolism inside an immature and mature biofilm, with inhibition percentages up to 93.18% (vs. Pseudomonas aeruginosa) and 76.50% (vs. Acinetobacter baumannii), respectively. Considering its significant antioxidants, enzyme inhibition, and antimicrobial activity, L. cardiaca emerges as a promising candidate for therapeutic potential.
Asunto(s)
Leonurus , Leonurus/química , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Acetilcolinesterasa , Agua , Extractos Vegetales/química , Antibacterianos/análisisRESUMEN
The Cucurbita genus has been widely used in traditional medicinal systems across different countries. In this study, we aimed to investigate the chemical composition, antioxidant properties, enzyme inhibitory, and cytotoxic effects of methanol and aqueous extracts obtained from the aerial parts, seeds, and fruit shells of Cucurbita okeechobeensis. Antioxidant properties were assessed using various chemical methods, including radical quenching (DPPH and ABTS), reducing power (CUPRAC and FRAP), metal chelation, and phosphomolybdenum assays. The extracts' enzyme inhibitory effects were tested against cholinesterase, amylase, glucosidase, and tyrosinase, whereas different cancer cell lines were used for the cytotoxicity study. The chemical composition, evaluated by HPLC-ESI-MSn, showed that the most abundant compounds were flavonoids (mainly quercetin glycosides) followed by phenolic acids (mostly caffeic acid derivatives). The aerial parts displayed stronger antioxidant ability than the seed and fruit shells, in agreement with the highest content in phytochemicals. In addition, the methanol extracts presented the highest bioactivity and content in phytochemicals; among them, the extract of the aerial part exhibited significant cytotoxic effects on cancer cell lines and induced apoptosis. Overall, our results suggest that C. okeechobeensis is a valuable source of bioactive compounds for the pharmaceutical and nutraceutical industries.
Asunto(s)
Antineoplásicos Fitogénicos , Antioxidantes , Cucurbita , Frutas , Componentes Aéreos de las Plantas , Extractos Vegetales , Semillas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Humanos , Semillas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cucurbita/química , Componentes Aéreos de las Plantas/química , Frutas/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Cromatografía Líquida de Alta PresiónRESUMEN
Cultivation of goji berries (GB), fruits of Lycium barbarum L. (Solanaceae), is expanding worldwide, including in Europe. In this study, a comparative analysis of the nutritional value, chemical composition and in vitro biological activities of GB from different locations in Serbia was performed. Proximate compositions were evaluated according to standard methods. Minerals were assessed by inductively coupled plasma techniques, while fatty acids, sterols, and phenolic profiles were analyzed by gas- and liquid chromatography-based techniques coupled with flame-ionization, mass spectrometry, or diode array detection. The total content of phenolics, flavonoids, carotenoids, and polysaccharides was assessed using spectrophotometric methods. Methanol extracts from GB were examined for their antioxidant, enzyme inhibitory (α-amylase, α-glucosidase, acetylcholinesterase and tyrosinase) and antibacterial activities. Despite significant variations among samples from different locations, the results confirmed that GB are a valuable source of dietary fiber and protein and are characterized by favorable fatty acid profiles. Phytochemical analysis revealed that ß-sitosterol, Δ5-avenasterol, and 24-methyldesmosterol are the predominant sterols and caffeic acid, gallic acid, quercetin and rutin are the main phenols. All GB samples showed both antioxidant and mild antimicrobial activity. A dose-dependent anti-enzymatic activity (IC50 ranging 1.68-6.88 mg/mL) was demonstrated. The results support further promotion of GB cultivation in Serbia and further investigations on their potential applications in various industries.
Asunto(s)
Antioxidantes , Ácidos Grasos , Frutas , Lycium , Valor Nutritivo , Fenoles , Fitoquímicos , Lycium/química , Serbia , Frutas/química , Antioxidantes/análisis , Antioxidantes/farmacología , Fitoquímicos/análisis , Fitoquímicos/farmacología , Fenoles/análisis , Fenoles/farmacología , Ácidos Grasos/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/análisis , Flavonoides/farmacología , Carotenoides/análisis , Carotenoides/farmacología , Sitoesteroles/análisis , Sitoesteroles/farmacología , Antibacterianos/farmacología , Antibacterianos/análisis , Monofenol Monooxigenasa/antagonistas & inhibidores , Fibras de la Dieta/análisis , Estigmasterol/análisis , Estigmasterol/farmacología , Polisacáridos/farmacología , Polisacáridos/análisis , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisisRESUMEN
The popularity of plant-based proteins has increased, and mung bean protein (MBP) has gained immense attention due to its high yield, nutritional value, and health benefits. MBP is rich in lysine and has a highly digestible indispensable amino acid score. Dry and wet extractions are used to extract MBP flours and concentrates/isolates, respectively. To enhance the quality of commercial MBP flours, further research is needed to refine the purity of MBPs using dry extraction methods. Furthermore, MBP possesses various biological potential and techno-functional properties, but its use in food systems is limited by some poor functionalities, such as solubility. Physical, biological, and chemical technologies have been used to improve the techno-functional properties of MBP, which has expanded its applications in traditional foods and novel fields, such as microencapsulation, three-dimensional printing, meat analogs, and protein-based films. However, study on each modification technique remains inadequate. Future research should prioritize exploring the impact of these modifications on the biological potential of MBP and its internal mechanisms of action. This review aims to provide ideas and references for future research and the development of MBP processing technology.
Asunto(s)
Fabaceae , Vigna , Vigna/química , Fabaceae/química , Proteínas de Plantas , SolubilidadRESUMEN
Plant-derived products and their extracted compounds have been used in folk medicine since early times. Zimbro or common juniper (Juniperus communis) is traditionally used to treat renal suppression, acute and chronic cystitis, bladder catarrh, albuminuria, leucorrhea, and amenorrhea. These uses are mainly attributed to its bioactive composition, which is very rich in phenolics, terpenoids, organic acids, alkaloids, and volatile compounds. In the last few years, several studies have analyzed the huge potential of this evergreen shrub, describing a wide range of activities with relevance in different biomedical discipline areas, namely antimicrobial potential against human pathogens and foodborne microorganisms, notorious antioxidant and anti-inflammatory activities, antidiabetic, antihypercholesterolemic and antihyperlipidemic effects, and neuroprotective action, as well as antiproliferative ability against cancer cells and the ability to activate inductive hepato-, renal- and gastroprotective mechanisms. Owing to these promising activities, extracts and bioactive compounds of juniper could be useful for the development of new pharmacological applications in the treatment of several acute and chronic human diseases.
Asunto(s)
Juniperus , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Femenino , Humanos , Fenoles/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
Research background: In the recent years, considerable attention has been given to selenium status since its deficiency is linked with various disorders and affects at least 13% of world population. Additionally, mushrooms are known to possess pronounced capacity for absorption of various micronutrients, including Se, from soil/substrate. Here, we investigate the possibility of using Se-rich zeolitic tuff as a supplement for production of selenized mushroom. Furthermore, the impact of the enrichment on the activity of antioxidant enzymes and biological potential of Coriolus versicolor medicinal mushroom is studied. Experimental approach: Se(IV)- and Se(VI)-modified natural zeolitic tuff from the Serbian deposit Zlatokop was used as supplement for mushroom cultivation. To examine the effectiveness of selenium enrichment, we determined total selenium with inductively coupled plasma mass spectrometry (ICP-MS), together with the activity of antioxidant enzymes in fresh fruiting bodies and biological potential of methanolic extracts. Antioxidant activity was evaluated using the appropriate tests for: inhibition of lipid peroxidation, DPPH free radical scavenging assay, Fe(III)-reducing antioxidant power assay and ability of chelating Fe2+ ions. The antibacterial activity against foodborne pathogens was measured by broth microdilution assay. Additionally, chemical composition of the prepared extracts was studied using UV-Vis and Fourier transform infrared (FTIR) spectroscopy. Results and conclusions: Content of selenium detected in biofortified C. versicolor was even 470 times higher than in control on dry mass basis ((140.7±3.8) vs (0.3±0.1) µg/g), proving that Se-rich zeolitic tuff is an excellent supplement for mushroom production. Furthermore, the results of monitoring the activity of antioxidant enzymes revealed that most of the Se-enriched mushrooms exhibited higher superoxide dismutase (SOD) and catalase (CAT) and lower glutathione peroxidase (GSH-Px) activities than control. Due to higher amounts of enzymes, which can quickly catalyze the reduction of superoxide radicals, the quality of selenium-enriched mushrooms is preserved for a longer period of time. Investigation of biological potential indicated that Se-enriched mushroom methanolic extracts, generally, expressed enhanced antioxidant properties. Additionally, extracts showed antibacterial activity against all tested pathogenic microorganisms. Novelty and scientific contribution: Cultivation of mushrooms on Se-enriched zeolitic tuff is a new technological approach for obtaining Se-fortified food/supplements with enhanced antioxidant and antibacterial activities.
RESUMEN
Actinobacterial natural products showed a critical basis for the discovery of new antibiotics as well as other lead secondary metabolites. Varied environmental and physiological signals touch the antibiotic machinery that faced a serious decline in the last decades. The reason was exposed by genomic sequencing data, which revealed that Actinomycetes harbor a large portion of silent biosynthetic gene clusters in their genomes that encrypt for secondary metabolites. These gene clusters are linked with a great reservoir of yet unknown molecules, and arranging them is considered a major challenge for biotechnology approaches. In the present paper, we discuss the recent strategies that have been taken to augment the yield of secondary metabolites via awakening these cryptic genes in Actinomycetes with emphasis on chemical signaling molecules used to induce the antibiotics biosynthesis. The rationale, types, applications and mechanisms are discussed in detail, to reveal the productive path for the unearthing of new metabolites, covering the literature until the end of 2020.
Asunto(s)
Actinobacteria/metabolismo , Antibacterianos/biosíntesis , Actinobacteria/química , Actinobacteria/genética , Antibacterianos/química , Genes Bacterianos , Metabolismo SecundarioRESUMEN
Phytochemicals offer immense promise for sustainable development and production of nanotechnology-enabled products. In the present study, Olax nana Wall. ex Benth. (family: Olacaceae) aqueous extract was used as an effective stabilizing agent to produce biogenic silver (ON-AgNPs) and gold nanoparticles (ON-AuNPs), which were investigated for biocompatibility and prospective biomedical applications (antibacterial, anticancer, antileishmanial, enzyme inhibition, antinociceptive, and anti-inflammatory activities). Various characterization techniques (XRD, FTIR, SEM, TEM, DLS, EDX, and SAED) revealed efficient biosynthesis of ON-AgNPs (26 nm) and ON-AuNPs (47 nm). In the toxicological assessment, ON-AgNPs and ON-AuNPs were found biocompatible towards human RBCs and macrophages (IC50 > 200 µg/mL). In a concentration range of 62.5-2000 µg/mL, a strong antibacterial effect was produced by ON-AgNPs against Staphylococcus epidermidis (MIC = 7.14 µg/mL) and Escherichia coli (8.25 µg/mL), while ON-AuNPs was only active against Staphylococcus aureus (9.14 µg/mL). At a concentration of 3.9-500 µg/mL, a dose-dependant inhibition of HepG2 cancer cells was produced by ON-AgNPs (IC50 = 14.93 µg/mL) and ON-AuNPs (2.97 µg/mL). Both ON-AgNPs and ON-AuNPs were found active against Leishmania tropica (KMH23) promastigotes (IC50 = 12.56 and 21.52 µg/mL) and amastigotes (17.44 and 42.20 µg/mL), respectively, after exposure to a concentration range of 1-200 µg/mL for 72 h. Preferential enzyme inhibition against urease and carbonic anhydrase II were noted for ON-AgNPs (39.23 and 8.89%) and ON-AuNPs (31.34 and 6.34%), respectively; however, these were found inactive against xanthine oxidase at 0.2 mg/mL. In the in vivo antinociceptive (acetic acid-induced abdominal constrictions) and anti-inflammatory (carrageenan-induced paw edema) activities, ON-AgNPs and ON-AuNPs at doses of 40 and 80 mg/kg, significantly attenuated the tonic nociception (P < 0.001) and ameliorated the carrageenan-induced inflammation (P < 0.01, P < 0.001). The results of in vitro and in vivo activities indicated that the biogenic nanoparticles can be used as valuable theranostic agents for further exploration of diverse biomedical applications.
Asunto(s)
Materiales Biocompatibles/química , Coloides/toxicidad , Nanopartículas del Metal/química , Nanomedicina Teranóstica/métodos , Bacterias/efectos de los fármacos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/toxicidad , Coloides/química , Eritrocitos/efectos de los fármacos , Oro/química , Humanos , Macrófagos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Extractos Vegetales/química , Estudios Prospectivos , Plata/químicaRESUMEN
Endophytic bacteria are known to produce a wide array of bioactive secondary metabolites with beneficial effects on human health. In the current study, a novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1, was isolated from the seeds of Oryza sativa. Initially, the crude extract of RWL-1 was assessed for potential biological effects of enzyme inhibition and cytotoxicity and was found to exhibit a broad spectrum inhibition for α-glucosidase (37 ± 0.09%) and urease (49.4 ± 0.53%). The screening results were followed by bioassay-guided isolation of secondary metabolite(s) from RWL-1. Extensive chromatographic and spectrophotometry analyses revealed the presence of compound 1 (S)-2-hydroxy-N-((S)-1-((S)-8-hydroxy-1-oxoisochroman-3-yl)-3-methylbutyl)-2-((S)-5-oxo-2,5-dihydrofuran-2-yl)acetamide. Further bioassays of compound 1 showed significant inhibition of α-glucosidase (52.98 ± 0.8%) and urease (51.27 ± 1.0%), compared with positive control values of 79.14 ± 1.9% and 88.24 ± 2.2%, and negative controls (0.08 ± 0.1% and 0.05 ± 0.01%), respectively. The current study suggests that bacterial endophytes are a rich source of novel bioactive compounds with high therapeutic value.
Asunto(s)
Bacillus amyloliquefaciens/química , Inhibidores de Glicósido Hidrolasas/química , Línea Celular Tumoral , Endófitos/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Oryza/microbiología , Semillas/microbiología , Ureasa/antagonistas & inhibidores , Ureasa/química , alfa-Glucosidasas/químicaRESUMEN
First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.
Asunto(s)
Aluminio , Antibacterianos , Antineoplásicos , Cobre , Escherichia coli , Níquel , Sulfuros , Compuestos de Zinc , Humanos , Níquel/química , Antibacterianos/farmacología , Antibacterianos/química , Sulfuros/química , Sulfuros/farmacología , Cobre/química , Antineoplásicos/farmacología , Antineoplásicos/química , Aluminio/química , Compuestos de Zinc/química , Escherichia coli/efectos de los fármacos , Células Hep G2 , Nanopartículas del Metal/química , Supervivencia Celular/efectos de los fármacos , Bacillus cereus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanopartículas/químicaRESUMEN
Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.
Asunto(s)
Acetatos , Alcaloides , Chelidonium , Humanos , Extractos Vegetales/química , Chelidonium majus , Metanol , Células HEK293 , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Solventes/química , Antioxidantes , Agua , Chelidonium/químicaRESUMEN
We report an unusual constellation of diseases in a 32-year-old woman with neurofibromatosis type 1 (NF1) diagnosed with the recently described precursor entity of malignant peripheral nerve sheath tumor (MPNST), the so-called atypical neurofibromatous neoplasm with unknown biological potential (ANNUBP) and a large symptomatic cervical arteriovenous fistula. An [18F] 2-Fluoro-2-deoxy-D-glucose PET/CT (FDG-PET/CT) was performed to detect and stage a conspicuous symptomatic cervical tumor. The FDG-PET/CT showed high FDG uptake in one of the multiple known tumorous lesions associated with peripheral nerves. However, no relevant FDP uptake was observed in this affected cervical area. After digital subtraction angiography, the cervical mass turned out to be a widespread arteriovenous fistula of the vertebral artery. This was successfully treated using endovascular embolization. Subsequently, magnet resonance imaging (MRI) of the FDG-positive tumor revealed a well-enhanced homogeneous mass of the sciatic nerve measuring 5.2×2.4×2.8 cm. Microsurgical gross total tumor resection was performed using ultrasound. The final histopathological diagnosis was ANNUBP transformed from neurofibroma. The patient benefited excellently from the surgery; no recurrence or metastasis has been observed since resection. According to imaging, ANNUBP can be characterized as a well-enhanced homogeneous mass on MRI, displaying high uptake on FDG-PET/CT and hypoechogenic in ultrasound.
RESUMEN
Persimmon-derived pectin (PP) is a versatile dietary polysaccharide with considerable industrial and biological significance, demonstrating a range of functionalities and health-promoting benefits. This review explores the changes in PP during postharvest and processing, detailing structural alterations and extraction techniques for optimal characteristics. Key functional attributes of PP-such as emulsification, rheology, antioxidant capacity, immunomodulation, and gut microbiota regulation-highlight its potential applications in food, healthcare, pharmaceuticals, and cosmetics. The review also explores methods to enhance the functional properties of PP through synergistic interactions with polyphenols. A strategic roadmap for advancing PP research is proposed, connecting extraction methods, structural characteristics, and functional properties to tailor PP for specific applications in food science and technology. Overall, persimmon-derived pectin is positioned as a valuable food-derived bioactive ingredient with diverse capabilities, poised to drive innovation and advance nutritional science across multiple sectors.
RESUMEN
Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk's major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.
Asunto(s)
Glicéridos , Glicerol , Leche Humana , Animales , Humanos , Triglicéridos/análisis , Leche Humana/química , Valor Nutritivo , Relación Estructura-ActividadRESUMEN
In the study, the optimization of the extraction from Aloe vera leaf waste was performed via varying solid-to-solvent ratio, solvent type, extraction time, and technique (maceration, heat-, ultrasound-, and microwave-assisted extractions-HAE, UAE, and MAE, respectively). The optimal extraction conditions for achieving the highest polyphenol content are a 1:30 ratio, 70% ethanol, and 30 min of HAE. Total flavonoid and protein contents were significantly higher in the extract from MAE, while total condensed tannin content was the highest in HAE. LC-MS analysis quantified 13 anthraquinone and chromone compounds. The variations in the FT-IR spectra of the extracts obtained by different extraction procedures are minor. The influence of extraction conditions on the antioxidant ability of the extracts depended on applied antioxidant assays. The extracts possessed medium inhibition properties against Staphylococcus aureus and weak inhibitory activity against Enterococcus feacalis. The extracts had stimulative effect on HaCaT cell viability. Regarding the extraction yield, there was a significant difference between the used extraction techniques (MAE > HAE > maceration and UAE). The presented study is an initial step in the production of polyphenol-rich extracts from A. vera leaf waste aimed to be used for the potential preparation of pharmaceutical and cosmetic formulations for the skin.
RESUMEN
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.
RESUMEN
Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological applications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule 'trehalose aka mycose', and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential.
Asunto(s)
Estrés Oxidativo , Trehalosa , Trehalosa/farmacología , Trehalosa/metabolismo , Células Madre/metabolismo , AutofagiaRESUMEN
The influence of drying and extraction processes on the phytochemical composition and biopotential of elderberry is challenging for the food industry. For this reason in this research two drying techniques (lyophilization and natural convection) and three extraction techniques (ultrasound (UAE), microwave (MAE), and conventional (maceration (MAC)) was applied using two"green" solvents (water and 50 % ethanol). Results of the research showed that lyophilization was a better way of drying than natural convection, while MAE extraction was the most efficient technique for the isolation of secondary metabolites. The most abundant phenolic compounds established by LC-MS/MS analysis, were chlorogenic acid and rutin, identified in extracts of lyophilized elderberries. Elderberry extracts achieved great antioxidant (CUPRAC: 2.30-5.13 mg TE/mL) and enzyme inhibitor potential (α-amylase: 0.51-8.34 mg ACAE/mL). The results suggest that elderberry is a rich natural source of bioactive compounds and could be used for the future development of dietary supplements and functional foods.
Asunto(s)
Sambucus , Sambucus/química , Polifenoles/análisis , Cromatografía Liquida , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Antioxidantes/química , TecnologíaRESUMEN
The aims of the present study were to evaluate for the first time the chemical composition and antioxidant, antibacterial, antifungal and antiproliferative potentials of the Romanian George 90 lavender species, as well as parental species, L. angustifolia and L. latifolia. The L. angustifolia, L. latifolia and George 90 essential oils were analyzed by GC-MS/MS and the L. angustifolia, L. latifolia and George 90 hydroalcoholic extracts were analyzed by HPLC-DAD. The antioxidant, antibacterial, antifungal and antiproliferative assays revealed that all the investigated species showed significant activities. The results highlighted the chemical composition and the promising biological potentials of the L. angustifolia, L. latifolia and George 90 lavender species, validating their ethnomedicinal value, which offers potential applications as natural drugs.
RESUMEN
Background: Bacterial metabolites play a crucial role in human health and have proven effective in treating various diseases. In this study, the 16S rRNA method and streaking were employed to isolate and molecularly identify a bacterial strain, with the goal of characterizing bioactive volatile metabolites extracted using nonpolar and polar solvents. Methods: Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to identify 29 compounds in the bacterial metabolites, including key compounds associated with Bacillus spp. The main compounds identified included 2-propanone, 4,4-ethylenedioxy-1-pentylamine, 1,2-benzenedicarboxylic acid, 1,1-butoxy-1-isobutoxy-butane, and 3,3-ethoxycarbonyl-5-hydroxytetrahydropyran-2-one. Results: The literature indicates the diverse biological and pharmacological applications of these compounds. Different concentrations of the metabolites from Bacillus species were tested for biological activities, revealing significant inhibitory effects on anti-diabetic activity (84.66%), anti-inflammatory activity (99%), antioxidant activity (99.8%), and anti-hemolytic activity (90%). Disc diffusion method testing also demonstrated a noteworthy inhibitory effect against tested strains. Conclusion: In silico screening revealed that 1,2-benzenedicarboxylic acid exhibited anticancer activity and promising drug-designing properties against epithelial glioblastoma cancer genes. The study highlights the potential of Bacillus spp. as a valuable target for drug research, emphasizing the significance of bacterial metabolites in the production of biological antibacterial agents.