Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2320259121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588439

RESUMEN

Plant leaves, whose remarkable ability for morphogenesis results in a wide range of petal and leaf shapes in response to environmental cues, have inspired scientific studies as well as the development of engineering structures and devices. Although some typical shape changes in plants and the driving force for such shape evolution have been extensively studied, there remain many poorly understood mechanisms, characteristics, and principles associated with the vast array of shape formation of plant leaves in nature. Here, we present a comprehensive study that combines experiment, theory, and numerical simulations of one such topic-the mechanics and mechanisms of corrugated leaf folding induced by differential shrinking in Rhapis excelsa. Through systematic measurements of the dehydration process in sectioned leaves, we identify a linear correlation between change in the leaf-folding angle and water loss. Building on experimental findings, we develop a generalized model that provides a scaling relationship for water loss in sectioned leaves. Furthermore, our study reveals that corrugated folding induced by dehydration in R. excelsa leaves is achieved by the deformation of a structural architecture-the "hinge" cells. Utilizing such connections among structure, morphology, environmental stimuli, and mechanics, we fabricate several biomimetic machines, including a humidity sensor and morphing devices capable of folding in response to dehydration. The mechanisms of corrugated folding in R. excelsa identified in this work provide a general understanding of the interactions between plant leaves and water. The actuation mechanisms identified in this study also provide insights into the rational design of soft machines.


Asunto(s)
Arecaceae , Deshidratación , Hojas de la Planta , Agua/fisiología , Plantas
2.
Proc Natl Acad Sci U S A ; 120(2): e2211416120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595665

RESUMEN

Soft systems that respond to external stimuli, such as heat, magnetic field, and light, find applications in a range of fields including soft robotics, energy harvesting, and biomedicine. However, most of the existing systems exhibit nondirectional, nastic movement as they can neither grow nor sense the direction of stimuli. In this regard, artificial systems are outperformed by organisms capable of directional growth in response to the sense of stimuli or tropic growth. Inspired by tropic growth schemes of plant cells and fungal hyphae, here we report an artificial multistimuli-responsive tropic tip-growing system based on nonsolvent-induced phase separation of polymer solution, where polymer precipitates as its solvent dissolves into surrounding nonsolvent. We provide a theoretical framework to predict the size and velocity of growing precipitates and demonstrate its capability of sensing the directions of gravity, mechanical contact, and light and adjusting its growing direction in response. Exploiting the embedded physical intelligence of sensing and responding to external stimuli, our soft material system achieves multiple tasks including printing 3D structures in a confined space, bypassing mechanical obstacles, and shielded transport of liquids within water.


Asunto(s)
Células Vegetales , Polímeros , Gravitación
3.
Proc Natl Acad Sci U S A ; 119(33): e2201776119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943987

RESUMEN

Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.


Asunto(s)
Bioingeniería , Biomimética , Polimerizacion , Robótica , Agaricales/crecimiento & desarrollo , Bioingeniería/métodos , Biomimética/métodos , Movimiento , Desarrollo de la Planta
4.
Proc Natl Acad Sci U S A ; 119(31): e2120021119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881808

RESUMEN

Protein based composites, such as nacre and bone, show astounding evolutionary capabilities, including tunable physical properties. Inspired by natural composites, we studied assembly of atomistically thin inorganic sheets with genetically engineered polymeric proteins to achieve mechanically compliant and ultra-tough materials. Although bare inorganic nanosheets are brittle, we designed flexible composites with proteins, which are insensitive to flaws due to critical structural length scale (∼2 nm). These proteins, inspired by squid ring teeth, adhere to inorganic sheets via secondary structures (i.e., ß-sheets and α-helices), which is essential for producing high stretchability (59 ± 1% fracture strain) and toughness (54.8 ± 2 MJ/m3). We find that the mechanical properties can be optimized by adjusting the protein molecular weight and tandem repetition. These exceptional mechanical responses greatly exceed the current state-of-the-art stretchability for layered composites by over a factor of three, demonstrating the promise of engineering materials with reconfigurable physical properties.


Asunto(s)
Materiales Biomiméticos , Proteínas , Materiales Biomiméticos/química , Ingeniería Genética , Nácar/química , Polímeros/química , Conformación Proteica , Proteínas/química , Proteínas/genética , Secuencias Repetidas en Tándem
5.
Nano Lett ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848540

RESUMEN

Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.

6.
Small ; : e2402565, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923716

RESUMEN

Biologically engineered nanomaterials give rise to unique and intriguing properties, which are not available in nature. The full-realization of such has been hindered by the lack of robust and straightforward techniques to produce the required architectures. Here a new bottomup bionano-engineering route is developed to construct nanomaterials using a guided assembly of collagen building blocks, establishing a lithographic process for three-dimensional collagen-based hierarchical micronano-architectures. By introducing optimized hybrid electro-hydrodynamic micronano-lithography exploiting collagen molecules as biological building blocks to self-assemble into a complex variety of structures, quasi-ordered mimics of metamaterials-like are constructed. The tailor-designed engineered apparatus generates the underlying substrates with vertical orientation of collagen at controlled speeds. Templating these hierarchical structures into inorganic materials allows the replication of their network into periodic metal micronano-assemblies. These generate substrates with interesting optical properties, suggesting that size-and-orientation dependent nanofilaments with varying degree of lateral order yield distinctly coloured structures with characteristic optical spectra correlated with observed colours, which varying diameters and interspacing, are attributable to coherent scattering by different periodicity of each fibrous micronano-structure. The artificial mimics display similar optical characteristics to the natural butterfly wing's structure, known to exhibit extraordinary electromagnetic properties, driving future applications in cloaking, super-lenses, photovoltaics and photodetectors.

7.
Macromol Rapid Commun ; 45(13): e2400038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684191

RESUMEN

Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.0 °C) and extended (27.0 and 36.5 °C) temperatures. Moreover, the gels successfully adapt to the environmental changes; they beat faster and smaller as the temperature increases. The period and amplitude are also controlled by tuning the amount of main-monomers and N-(3-aminopropyl) acrylamide. Furthermore, the record amplitude in the bulk gel system consisting of polymer strand and cross-linker at 36.5 °C is achieved (≈10.8%). The study shows new self-oscillation systems composed of unprecedented combinations of materials, giving the community a robust material-based insight for developing more life-like autonomous biomimetic soft robots with various operating temperatures and beyond.


Asunto(s)
Geles , Temperatura , Geles/química , Acrilamidas/química , Polímeros/química , Materiales Biomiméticos/química , Biomimética/métodos
8.
Bioorg Chem ; 144: 107162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308999

RESUMEN

Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.


Asunto(s)
Materiales Biomiméticos , Materiales Biomiméticos/química , Proteínas , Péptidos/química
9.
Bioorg Chem ; 147: 107418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703441

RESUMEN

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Asunto(s)
Biocatálisis , Oxidación-Reducción , Procesos Fotoquímicos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Estructura Molecular , NAD/química , NAD/metabolismo , Biomimética , Niacinamida/química , Niacinamida/metabolismo , Compuestos de Nitrógeno/química , Grafito
10.
Nanomedicine ; 56: 102728, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061449

RESUMEN

Cytoreductive surgery remains as the gold standard to treat ovarian cancer, but with limited efficacy since not all tumors can be intraoperatively visualized for resection. We have engineered erythrocyte-derived nano-constructs that encapsulate the near infrared (NIR) fluorophore, indocyanine green (ICG), as optical probes for NIR fluorescence imaging of ovarian tumors. Herein, we have enriched the membrane of these nano-constructs with cholesterol, and functionalized their surface with folic acid (FA) to target the folate receptor-α. Using a mouse model, we show that the average fraction of the injected dose per tumor mass for nano-constructs with both membrane cholesterol enrichment and FA functionalization was ~ sixfold higher than non-encapsulated ICG, ~ twofold higher than nano-constructs enriched with cholesterol alone, and 33 % higher than nano-constructs with only FA functionalization at 24-h post-injection. These results suggest that erythrocyte-derived nano-constructs containing both cholesterol and FA present a platform for improved fluorescence imaging of ovarian tumors.


Asunto(s)
Ácido Fólico , Neoplasias Ováricas , Humanos , Femenino , Ácido Fólico/farmacología , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/patología , Eritrocitos , Verde de Indocianina , Imagen Óptica/métodos , Línea Celular Tumoral
11.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38054737

RESUMEN

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

12.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892030

RESUMEN

This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.


Asunto(s)
Tecnología Química Verde , Humanos , Animales , Tecnología Química Verde/métodos , Nanotecnología/métodos , Composición de Medicamentos/métodos , Nanopartículas/química , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/administración & dosificación
13.
Anal Bioanal Chem ; 415(18): 4467-4478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36905407

RESUMEN

Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5-10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid-liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5-10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety.


Asunto(s)
Impresión Molecular , Nanopartículas , Muramidasa/análisis , Alérgenos , Impresión Molecular/métodos , Nanopartículas/química , Electrodos , Albúmina Sérica Bovina , Técnicas Electroquímicas/métodos , Límite de Detección
14.
Macromol Rapid Commun ; 44(18): e2300199, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247428

RESUMEN

In this study, molecular engineering and biomimetic principles are utilized to prepare highly effective nitrile-functionalized pyrazine crosslinking units by exploiting pyrazine's unique nucleophilic strengthening mechanism and proton bonding ability. The curing behaviors of pyrazine-2,3-dicarbonitrile and phthalonitrile are investigated through model curing systems and molecular simulation. The results indicate that pyrazine-2,3-dicarbonitrile exhibits higher reactivity than phthalonitrile, promoted by amine. The cured products of pyrazine-2,3-dicarbonitrile predominantly comprise thermally stable azaisoindoline and azaphthalocyanine. This novel type of highly effective crosslinking unit, and the comprehended mechanism of action of pyrazine at the molecular level, significantly expand the application of pyrazine in materials science.


Asunto(s)
Nitrilos , Pirazinas , Enlace de Hidrógeno , Simulación por Computador
15.
Mar Drugs ; 21(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37755073

RESUMEN

Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.


Asunto(s)
Hierro , Poríferos , Animales , Biomimética , Dopamina
16.
Proc Natl Acad Sci U S A ; 117(30): 17622-17626, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661166

RESUMEN

Technologies to fold structures into compact shapes are required in multiple engineering applications. Earwigs (Dermaptera) fold their fanlike hind wings in a unique, highly sophisticated manner, granting them the most compact wing storage among all insects. The structural and material composition, in-flight reinforcement mechanisms, and bistable property of earwig wings have been previously studied. However, the geometrical rules required to reproduce their complex crease patterns have remained uncertain. Here we show the method to design an earwig-inspired fan by considering the flat foldability in the origami model, as informed by X-ray microcomputed tomography imaging. As our dedicated designing software shows, the earwig fan can be customized into artificial deployable structures of different sizes and configurations for use in architecture, aerospace, mechanical engineering, and daily use items. Moreover, the proposed method is able to reconstruct the wing-folding mechanism of an ancient earwig relative, the 280-million-year-old Protelytron permianum This allows us to propose evolutionary patterns that explain how extant earwigs acquired their wing-folding mechanism and to project hypothetical, extinct transitional forms. Our findings can be used as the basic design guidelines in biomimetic research for harnessing the excellent engineering properties of earwig wings, and demonstrate how a geometrical designing method can reveal morphofunctional evolutionary constraints and predict plausible biological disparity in deep time.

17.
Proc Natl Acad Sci U S A ; 117(16): 8711-8718, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32253309

RESUMEN

Here we describe the development of a humidity-responsive sheet of paper that is derived solely from natural pollen. Adaptive soft material components of the paper exhibit diverse and well-integrated responses to humidity that promote shape reconfiguration, actuation, and locomotion. This mechanically versatile and nonallergenic paper can generate a cyclically high contractile stress upon water absorption and desorption, and the rapid exchange of water drives locomotion due to hydrodynamic effects. Such dynamic behavior can be finely tuned by adjusting the structure and properties of the paper, including thickness, surface roughness, and processing conditions, analogous to those of classical soapmaking. We demonstrate that humidity-responsive paper-like actuators can mimic the blooming of the Michelia flower and perform self-propelled motion. Harnessing the material properties of bioinspired systems such as pollen paper opens the door to a wide range of sustainable, eco-friendly, and biocompatible material innovation platforms for applications in sensing, actuation, and locomotion.

18.
Proc Natl Acad Sci U S A ; 117(10): 5125-5133, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094173

RESUMEN

Soft-bodied aquatic invertebrates, such as sea slugs and snails, are capable of diverse locomotion modes under water. Recapitulation of such multimodal aquatic locomotion in small-scale soft robots is challenging, due to difficulties in precise spatiotemporal control of deformations and inefficient underwater actuation of existing stimuli-responsive materials. Solving this challenge and devising efficient untethered manipulation of soft stimuli-responsive materials in the aquatic environment would significantly broaden their application potential in biomedical devices. We mimic locomotion modes common to sea invertebrates using monolithic liquid crystal gels (LCGs) with inherent light responsiveness and molecular anisotropy. We elicit diverse underwater locomotion modes, such as crawling, walking, jumping, and swimming, by local deformations induced by selective spatiotemporal light illumination. Our results underpin the pivotal role of the physicomechanical properties of LCGs in the realization of diverse modes of light-driven robotic underwater locomotion. We envisage that our results will introduce a toolbox for designing efficient untethered soft robots for fluidic environments.

19.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112253

RESUMEN

In recent years, numerous studies have been conducted to analyze how humans subconsciously optimize various performance criteria while performing a particular task, which has led to the development of robots that are capable of performing tasks with a similar level of efficiency as humans. The complexity of the human body has led researchers to create a framework for robot motion planning to recreate those motions in robotic systems using various redundancy resolution methods. This study conducts a thorough analysis of the relevant literature to provide a detailed exploration of the different redundancy resolution methodologies used in motion generation for mimicking human motion. The studies are investigated and categorized according to the study methodology and various redundancy resolution methods. An examination of the literature revealed a strong trend toward formulating intrinsic strategies that govern human movement through machine learning and artificial intelligence. Subsequently, the paper critically evaluates the existing approaches and highlights their limitations. It also identifies the potential research areas that hold promise for future investigations.


Asunto(s)
Brazo , Inteligencia Artificial , Humanos , Biomimética/métodos , Movimiento (Física) , Movimiento
20.
Sensors (Basel) ; 23(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177763

RESUMEN

Soft biological tissues perform various functions. Sensory nerves bring sensations of light, voice, touch, pain, or temperature variation to the central nervous system. Animal senses have inspired tremendous sensors for biomedical applications. Following the same principle as photosensitive nerves, we design flexible ionic hydrogels to achieve a biologic photosensor. The photosensor allows responding to near-infrared light, which is converted into a sensory electric signal that can communicate with nerve cells. Furthermore, with adjustable thermal and/or electrical signal outputs, it provides abundant tools for biological regulation. The tunable photosensitive performances, high flexibility, and low cost endow the photosensor with widespread applications ranging from neural prosthetics to human-machine interfacing systems.


Asunto(s)
Biónica , Percepción del Tacto , Animales , Humanos , Hidrogeles , Tacto , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA