Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108817

RESUMEN

The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3ß inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.


Asunto(s)
Exosomas , Células Madre Pluripotentes , Humanos , Péptidos beta-Amiloides , Plexo Coroideo/fisiología , Glucógeno Sintasa Quinasa 3 beta , Organoides
2.
Methods Mol Biol ; 2474: 93-105, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294759

RESUMEN

The road to discover novel therapeutics for mental and neurological disorders has been severely hampered by the lack of access to relevant testing platforms. Currently, roughly 0.1% of drugs that show promise in preclinical testing make it to Phase I clinical trials, and 90% of those drugs go on to fail FDA approval. One of the reasons responsible for this low success rate is that conventional two-dimensional (2D) cell culture models are not accurate enough predictors of how drugs will work in humans. Three-dimensional (3D) brain organoids differentiated from induced pluripotent stem cells (iPSCs) to resemble specific parts of the human brain, which include architecture composition and physiology, can provide an alternative system that may lead to breakthroughs in key areas of drug testing and toxicological evaluation. Having reliable and scalable iPSC-derived brain organoid models that can much more accurately predict human drug responses will significantly increase success rate in developing treatments for brain-related disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Encéfalo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Humanos
3.
Cell Stem Cell ; 27(6): 951-961.e5, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113348

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, leads to respiratory symptoms that can be fatal. However, neurological symptoms have also been observed in some patients. The cause of these complications is currently unknown. Here, we use human-pluripotent-stem-cell-derived brain organoids to examine SARS-CoV-2 neurotropism. We find expression of viral receptor ACE2 in mature choroid plexus cells expressing abundant lipoproteins, but not in neurons or other cell types. We challenge organoids with SARS-CoV-2 spike pseudovirus and live virus to demonstrate viral tropism for choroid plexus epithelial cells but little to no infection of neurons or glia. We find that infected cells are apolipoprotein- and ACE2-expressing cells of the choroid plexus epithelial barrier. Finally, we show that infection with SARS-CoV-2 damages the choroid plexus epithelium, leading to leakage across this important barrier that normally prevents entry of pathogens, immune cells, and cytokines into cerebrospinal fluid and the brain.


Asunto(s)
Barrera Hematoencefálica/virología , Plexo Coroideo/virología , SARS-CoV-2/fisiología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Biológicos , Organoides/virología , Células Vero , Tropismo Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA