Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(8): e2216641120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780517

RESUMEN

Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.


Asunto(s)
Centrómero , Pollos , Animales , Masculino , Pollos/genética , Centrómero/genética , Telómero , Heterocromatina , Secuencias Repetidas en Tándem
2.
Plant J ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331792

RESUMEN

Ilex is known for its rich content of secondary metabolites, particularly triterpenoid saponins. These compounds hold significant value in natural remedies and herbal medicine. However, the molecular mechanisms responsible for triterpenoid biosynthesis in plants of this genus remain largely unexplored. In this study, we successfully generated the first chromosome-scale genome of Ilex hylonoma. The assembly, comprising 20 anchored chromosomes, has an N50 contig size of 2.13 Mb and a scaffold size of 33.68 Mb. Comparative genome analyses with two other congeners with available chromosome-level genomes suggested that an end-to-end chromosome fusion event likely contributed to the reduction in chromosome number from n = 20 to n = 19 within this genus. By integrating transcriptomic and metabolomic data, we identified the gene expression patterns and metabolite profiles of I. hylonoma across three commonly utilized medicinal tissues. We subsequently pinpointed candidate genes involved in the regulation of triterpenoid saponin biosynthesis, including CYP450 genes, UGT genes, and associated transcription factors. Furthermore, yeast heterologous expression analysis revealed that ihyl08363 catalyzed the conversion of ß-amyrin into oleanolic acid, while ihyl04303 catalyzed the C-2α hydroxylation of oleanolic acid to produce maslinic acid. This integrated analysis provides valuable insights into the biosynthesis of important triterpenoid saponins in medicinal Ilex plants.

3.
Plant J ; 119(3): 1313-1326, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838061

RESUMEN

While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.


Asunto(s)
Cardamine , Silenciador del Gen , Filogenia , Poliploidía , ARN Ribosómico 5S , ARN Ribosómico 5S/genética , Cardamine/genética , Genoma de Planta/genética , ADN Ribosómico/genética , Hibridación Fluorescente in Situ , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 118(6): 1832-1847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461471

RESUMEN

Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.


Asunto(s)
Centrómero , Cromosomas de las Plantas , ADN Satélite , Hibridación Fluorescente in Situ , Centrómero/genética , Cromosomas de las Plantas/genética , ADN Satélite/genética , Genoma de Planta/genética , Elementos Transponibles de ADN/genética , ADN de Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217621

RESUMEN

High throughput chromatin conformation capture (Hi-C) of leukocyte DNA was used to investigate the evolutionary stability of chromatin conformation at the chromosomal level in 11 species from three carnivore families: Felidae, Canidae, and Ursidae. Chromosome-scale scaffolds (C-scaffolds) of each species were initially used for whole-genome alignment to a reference genome within each family. This approach established putative orthologous relationships between C-scaffolds among the different species. Hi-C contact maps for all C-scaffolds were then visually compared and found to be distinct for a given reference chromosome or C-scaffold within a species and indistinguishable for orthologous C-scaffolds having a 1:1 relationship within a family. The visual patterns within families were strongly supported by eigenvectors from the Hi-C contact maps. Analysis of Hi-C contact maps and eigenvectors across the three carnivore families revealed that most cross-family orthologous subchromosomal fragments have a conserved three-dimensional (3D) chromatin structure and thus have been under strong evolutionary constraint for ∼54 My of carnivore evolution. The most pronounced differences in chromatin conformation were observed for the X chromosome and the red fox genome, whose chromosomes have undergone extensive rearrangements relative to other canids. We also demonstrate that Hi-C contact map pattern analysis can be used to accurately identify orthologous relationships between C-scaffolds and chromosomes, a method we termed "3D comparative scaffotyping." This method provides a powerful means for estimating karyotypes in de novo sequenced species that have unknown karyotype and no physical mapping information.


Asunto(s)
Carnívoros/genética , Cromatina/genética , Animales , Cromosomas , Evolución Molecular
6.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35658077

RESUMEN

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Asunto(s)
Procesos de Determinación del Sexo , Takifugu , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Takifugu/genética , Translocación Genética
7.
Proc Natl Acad Sci U S A ; 119(40): e2209139119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161960

RESUMEN

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.


Asunto(s)
Evolución Molecular , Cariotipo , Mamíferos , Sintenía , Animales , Bovinos/genética , Cromosomas de los Mamíferos/genética , Euterios/genética , Humanos , Mamíferos/genética , Filogenia , Perezosos/genética , Sintenía/genética
8.
BMC Genomics ; 25(1): 617, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890595

RESUMEN

BACKGROUND: Sika deer (Cervus nippon) holds significance among cervids, with three genomes recently published. However, these genomes still contain hundreds of gaps and display significant discrepancies in continuity and accuracy. This poses challenges to functional genomics research and the selection of an appropriate reference genome. Thus, obtaining a high-quality reference genome is imperative to delve into functional genomics effectively. FINDINGS: Here we report a high-quality consensus genome of male sika deer. All 34 chromosomes are assembled into single-contig pseudomolecules without any gaps, which is the most complete assembly. The genome size is 2.7G with 23,284 protein-coding genes. Comparative genomics analysis found that the genomes of sika deer and red deer are highly conserved, an approximately 2.4G collinear regions with up to 99% sequence similarity. Meanwhile, we observed the fusion of red deer's Chr23 and Chr4 during evolution, forming sika deer's Chr1. Additionally, we identified 607 transcription factors (TFs) that are involved in the regulation of antler development, including RUNX2, SOX6, SOX8, SOX9, PAX8, SIX2, SIX4, SIX6, SPI1, NFAC1, KLHL8, ZN710, JDP2, and TWST2, based on this consensus reference genome. CONCLUSIONS: Our results indicated that we acquired a high-quality consensus reference genome. That provided valuable resources for understanding functional genomics. In addition, discovered the genetic basis of sika-red hybrid fertility and identified 607 significant TFs that impact antler development.


Asunto(s)
Cuernos de Venado , Ciervos , Genoma , Animales , Ciervos/genética , Ciervos/crecimiento & desarrollo , Cuernos de Venado/crecimiento & desarrollo , Cuernos de Venado/metabolismo , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Genómica/métodos
9.
Chromosoma ; 132(4): 329-342, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001396

RESUMEN

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.


Asunto(s)
Pintura Cromosómica , Ranidae , Animales , Rana esculenta/genética , Ranidae/genética , Cariotipificación , Anuros/genética , Cariotipo
10.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37183864

RESUMEN

Chromosome-scale genome assemblies based on ultralong-read sequencing technologies are able to illuminate previously intractable aspects of genome biology such as fine-scale centromere structure and large-scale variation in genome features such as heterochromatin, GC content, recombination rate, and gene content. We present here a new chromosome-scale genome of the Mongolian gerbil (Meriones unguiculatus), which includes the complete sequence of all centromeres. Gerbils are thus the one of the first vertebrates to have their centromeres completely sequenced. Gerbil centromeres are composed of four different repeats of length 6, 37, 127, or 1,747 bp, which occur in simple alternating arrays and span 1-6 Mb. Gerbil genomes have both an extensive set of GC-rich genes and chromosomes strikingly enriched for constitutive heterochromatin. We sought to determine if there was a link between these two phenomena and found that the two heterochromatic chromosomes of the Mongolian gerbil have distinct underpinnings: Chromosome 5 has a large block of intraarm heterochromatin as the result of a massive expansion of centromeric repeats, while chromosome 13 is comprised of extremely large (>150 kb) repeated sequences. In addition to characterizing centromeres, our results demonstrate the importance of including karyotypic features such as chromosome number and the locations of centromeres in the interpretation of genome sequence data and highlight novel patterns involved in the evolution of chromosomes.


Asunto(s)
Centrómero , Heterocromatina , Animales , Gerbillinae/genética , Heterocromatina/genética , Centrómero/genética , Genoma , Secuencias Repetitivas de Ácidos Nucleicos
11.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988296

RESUMEN

Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.


Asunto(s)
Insectos , Cromosoma X , Animales , Humanos , Cromosoma X/genética , Insectos/genética , Drosophila/genética , Cromosomas Humanos X , Evolución Biológica , Compensación de Dosificación (Genética)
12.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36810615

RESUMEN

Chromosome rearrangements are thought to promote reproductive isolation between incipient species. However, it is unclear how often, and under what conditions, fission and fusion rearrangements act as barriers to gene flow. Here we investigate speciation between two largely sympatric fritillary butterflies, Brenthis daphne and Brenthis ino. We use a composite likelihood approach to infer the demographic history of these species from whole-genome sequence data. We then compare chromosome-level genome assemblies of individuals from each species and identify a total of nine chromosome fissions and fusions. Finally, we fit a demographic model where effective population sizes and effective migration rate vary across the genome, allowing us to quantify the effects of chromosome rearrangements on reproductive isolation. We show that chromosomes involved in rearrangements experienced less effective migration since the onset of species divergence and that genomic regions near rearrangement points have a further reduction in effective migration rate. Our results suggest that the evolution of multiple rearrangements in the B. daphne and B. ino populations, including alternative fusions of the same chromosomes, have resulted in a reduction in gene flow. Although fission and fusion of chromosomes are unlikely to be the only processes that have led to speciation between these butterflies, this study shows that these rearrangements can directly promote reproductive isolation and may be involved in speciation when karyotypes evolve quickly.


Asunto(s)
Mariposas Diurnas , Fritillaria , Animales , Mariposas Diurnas/genética , Flujo Génico , Fritillaria/genética , Funciones de Verosimilitud , Cariotipo
13.
Genome ; 67(7): 223-232, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38742652

RESUMEN

The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.


Asunto(s)
Aves , Cromosomas Artificiales Bacterianos , Cromosomas , Evolución Molecular , Hibridación Fluorescente in Situ , Animales , Cromosomas Artificiales Bacterianos/genética , Aves/genética , Cromosomas/genética , Cariotipo , Cariotipificación , Filogenia , Pollos/genética
14.
Bioessays ; 44(7): e2200039, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35543235

RESUMEN

Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.


Asunto(s)
Procesos de Determinación del Sexo , Razón de Masculinidad , Genotipo , Humanos , Dinámica Poblacional , Reproducibilidad de los Resultados , Cromosomas Sexuales , Procesos de Determinación del Sexo/genética
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33602805

RESUMEN

Antagonistic interactions between the sexes are important drivers of evolutionary divergence. Interlocus sexual conflict is generally described as a conflict between alleles at two interacting loci whose identity and genomic location are arbitrary, but with opposite fitness effects in each sex. We build on previous theory by suggesting that when loci under interlocus sexual conflict are located on the sex chromosomes it can lead to cycles of antagonistic coevolution between them and therefore between the sexes. We tested this hypothesis by performing experimental crosses using Drosophila melanogaster where we reciprocally exchanged the sex chromosomes between five allopatric wild-type populations in a round-robin design. Disrupting putatively coevolved sex chromosome pairs resulted in increased male reproductive success in 16 of 20 experimental populations (10 of which were individually significant), but also resulted in lower offspring egg-to-adult viability that affected both male and female fitness. After 25 generations of experimental evolution these sexually antagonistic fitness effects appeared to be resolved. To formalize our hypothesis, we developed population genetic models of antagonistic coevolution using fitness expressions based on our empirical results. Our model predictions support the conclusion that antagonistic coevolution between the sex chromosomes is plausible under the fitness effects observed in our experiments. Together, our results lend both empirical and theoretical support to the idea that cycles of antagonistic coevolution can occur between sex chromosomes and illustrate how this process, in combination with autosomal coadaptation, may drive genetic and phenotypic divergence between populations.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/genética , Genética de Población , Modelos Genéticos , Reproducción , Cromosomas Sexuales/genética , Conducta Sexual Animal , Animales , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725164

RESUMEN

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Asunto(s)
Evolución Biológica , Cordados/genética , Cromosomas de los Mamíferos , Genoma , Animales , Secuencia de Bases , Secuencia Conservada
17.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772805

RESUMEN

Sexually reproducing organisms usually invest equally in male and female offspring. Deviations from this pattern have led researchers to new discoveries in the study of parent-offspring conflict, genomic conflict, and cooperative breeding. Some social insect species exhibit the unusual population-level pattern of split sex ratio, wherein some colonies specialize in the production of future queens and others specialize in the production of males. Theoretical work predicted that worker control of sex ratio and variation in relatedness asymmetry among colonies would cause each colony to specialize in the production of one sex. While some empirical tests supported theoretical predictions, others deviated from them, leaving many questions about how split sex ratio emerges. One factor yet to be investigated is whether colony sex ratio may be influenced by the genotypes of queens or workers. Here, we sequence the genomes of 138 Formica glacialis workers from 34 male-producing and 34 gyne-producing colonies to determine whether split sex ratio is under genetic control. We identify a supergene spanning 5.5 Mbp that is closely associated with sex allocation in this system. Strikingly, this supergene is adjacent to another supergene spanning 5 Mbp that is associated with variation in colony queen number. We identify a similar pattern in a second related species, Formica podzolica. The discovery that split sex ratio is determined, at least in part, by a supergene in two species opens future research on the evolutionary drivers of split sex ratio.


Asunto(s)
Hormigas/genética , Hormigas/fisiología , Animales , Evolución Biológica , Femenino , Genómica/métodos , Genotipo , Masculino , Reproducción/genética , Razón de Masculinidad , Conducta Sexual Animal/fisiología , Conducta Social
18.
BMC Biol ; 21(1): 109, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189152

RESUMEN

BACKGROUND: The Western mosquitofish, Gambusia affinis, is a model for sex chromosome organization and evolution of female heterogamety. We previously identified a G. affinis female-specific marker, orthologous to the aminomethyl transferase (amt) gene of the related platyfish (Xiphophorus maculatus). Here, we have analyzed the structure and differentiation of the G. affinis W-chromosome, using a cytogenomics and bioinformatics approach. RESULTS: The long arm of the G. affinis W-chromosome (Wq) is highly enriched in dispersed repetitive sequences, but neither heterochromatic nor epigenetically silenced by hypermethylation. In line with this, Wq sequences are highly transcribed, including an active nucleolus organizing region (NOR). Female-specific SNPs and evolutionary young transposable elements were highly enriched and dispersed along the W-chromosome long arm, suggesting constrained recombination. Wq copy number expanded elements also include female-specific transcribed sequences from the amt locus with homology to TE. Collectively, the G. affinis W-chromosome is actively differentiating by sex-specific copy number expansion of transcribed TE-related elements, but not (yet) by extensive sequence divergence or gene decay. CONCLUSIONS: The G. affinis W-chromosome exhibits characteristic genomic properties of an evolutionary young sex chromosome. Strikingly, the observed sex-specific changes in the genomic landscape are confined to the W long arm, which is separated from the rest of the W-chromosome by a neocentromere acquired during sex chromosome evolution and may thus have become functionally insulated. In contrast, W short arm sequences were apparently shielded from repeat-driven differentiation, retained Z-chromosome like genomic features, and may have preserved pseudo-autosomal properties.


Asunto(s)
Ciprinodontiformes , Elementos Transponibles de ADN , Masculino , Femenino , Animales , Elementos Transponibles de ADN/genética , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética , Genómica , Ciprinodontiformes/genética , Evolución Molecular
19.
Chromosoma ; 131(1-2): 29-45, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35099570

RESUMEN

Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.


Asunto(s)
Characiformes , Animales , Characiformes/genética , ADN , Evolución Molecular , Femenino , Peces/genética , Genoma , Genómica , Cromosomas Sexuales/genética
20.
Chromosoma ; 131(1-2): 59-75, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325297

RESUMEN

A substantial portion of the eukaryotic genome includes repetitive DNA, which is important for its stability, regulation, and architecture. Fungus-farming ant genomes show remarkable structural rearrangement rates that were necessary for the establishment of their agriculture-based lifestyle, highlighting the relevance of this peculiar group in understanding the repetitive portion of ant genome. Chromosomal banding studies are in accordance with genomic data because they show that repetitive heterochromatic sequences of basal and derivative Attina species are GC-rich, an uncommon trait in Formicidae. To understand the evolutionary dynamics of heterochromatin in Attina, we compared GC-rich heterochromatin patterns between the Paleoattina and Neoattina clades of this subtribe. To this end, we hybridized the Mrel-C0t probe (highly and moderately repetitive DNA) obtained from Mycetomoellerius relictus, Neoattina with GC-rich heterochromatin, in karyotypes of Paleoattina and Neoattina species. Additionally, we mapped the repetitive sequences (GA)15 and (TTAGG)6 in species of the two clades to investigate their organization and evolutionary patterns in the genome of Attina. The Mrel-C0t probe marked the heterochromatin in M. relictus, in other Mycetomoellerius spp., and in species of Mycetarotes, Cyphomyrmex, and Sericomyrmex (Neoattina). In Mycetomoellerius urichii, only pericentromeric heterochromatin was marked with Mrel-C0t. No marking was observed in Paleoattina species or in Atta and Acromyrmex (Neoattina). These results indicated that different evolutionary events led to heterochromatin differentiation in Attina. The most likely hypothesis is that GC-rich heterochromatin arose in the common ancestor of the two clades and accumulated various changes throughout evolution. The sequences (GA)15 and (TTAGG)6 located in euchromatin and telomeres, respectively, showed more homogeneous results among the species.


Asunto(s)
Hormigas , Heterocromatina , Agricultura , Animales , Hormigas/genética , ADN , Hongos/genética , Heterocromatina/genética , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA