Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30676822

RESUMEN

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Asunto(s)
Receptores Coestimuladores e Inhibidores de Linfocitos T/metabolismo , Inmunoterapia/métodos , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/fisiología , Virosis/inmunología , Animales , Senescencia Celular , Enfermedad Crónica , Anergia Clonal , Epigénesis Genética , Humanos , Neoplasias/terapia , Virosis/terapia
2.
Immunogenetics ; 75(3): 269-282, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36719466

RESUMEN

Killer-cell immunoglobulin-like receptors (KIRs) are mainly expressed on natural killer (NK) cells and are key regulators of innate immune responses. NK cells are the first responders in the face of infection and help promote placentation during pregnancy; the importance of KIRs in these NK-mediated processes is well-established. However, mounting evidence suggests that KIRs also have a prominent and long-lasting effect on the adaptive immune system. Here, we review the evidence for the impact of KIRs on T cell responses with a focus on the clinical significance of this interaction.


Asunto(s)
Linfocitos T , Virosis , Embarazo , Femenino , Humanos , Receptores KIR , Inmunidad Innata , Células Asesinas Naturales
3.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33027962

RESUMEN

T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically "exhausted" in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Activación de Linfocitos/efectos de los fármacos , Neoplasias/genética , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología
4.
New Microbes New Infect ; 62: 101471, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290794

RESUMEN

Background: LPV and MCV emerge as recent additions to the Polyomaviridae family, capable of inducing important infections. Studies have suggested the presence of LPV in human populations, with potential involvement in central nervous system (CNS) diseases. Additionally, MCV, closely related to LPV, has been implicated in Merkel cell carcinoma (MCC). This study aimed to explore the prevalence of LPV and MCV in individuals with compromised immunity due to chronic viral infections. Methods: 340 specimens, including HIV PCR-positive, HBV PCR-positive, HCV PCR-positive, and HIV/HBV/HCV negative sera, underwent screening via PCR technique to identify LPV and MCV genomes. Subsequently, sequencing was employed to validate the viral identity. Results: Out of all specimens, MCV DNA was detected in 8.52 % of participants, with a significantly higher prevalence in HIV-positive individuals (26.4 %). LPV was detected in only one HIV-positive patient. No co-detection of MCV and LPV was observed. Phylogenetic analysis confirmed the genetic similarity of the detected MCV strains to known references, while the LPV sequence showed 99 % identity to the published sequences of LPV-K38. Conclusion: This research provides insights into the prevalence of LPV and MCV in individuals with chronic viral infections. The study highlights the potential association between MCV and immunocompromised states, emphasizing the need for comprehensive investigations to understand the epidemiology, transmission routes, and clinical implications of these polyomaviruses in human populations.

5.
Front Immunol ; 14: 1271236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965314

RESUMEN

CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Humanos , Linfocitos T CD4-Positivos
6.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497356

RESUMEN

Interest in the capabilities of nucleic acid vaccines, (DNA and mRNA vaccines) for both prophylactic and therapeutic uses have greatly increased following the successful deployment of two mRNA and, on a more limited scale, one DNA vaccine for COVID-19. In addition to targeting other pathogens for prophylactic vaccines, efforts are also being made towards using them for therapies for chronic infections and cancer. An examination of past and current successes for such therapies using other technologies with an emphasis on the immunological mechanisms will be provided followed by an assessment of the relevant characteristics of DNA and mRNA vaccines to predict their utility for therapies for chronic viral infections and cancer. Efforts and progress for these targets will be described.

7.
Front Public Health ; 10: 880435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937266

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic has been a worldwide stress test for health systems. 2 years have elapsed since the description of the first cases of pneumonia of unknown origin. This study quantifies the impact of COVID-19 in the screening program of chronic viral infections such as human papillomavirus (HPV), human immunodeficiency virus (HIV), and hepatitis C virus (HCV) along the six different pandemic waves in our population. Each wave had particular epidemiological, biological, or clinical patterns. Methods: We analyzed the number of samples for screening of these viruses from March 2020 to February 2022, the new infections detected in the pandemic period compared to the previous year, the time elapsed between diagnosis and linking to treatment and follow-up of patients, and the percentage of late HIV diagnosis. Moreover, we used the origin of the samples as a marker for quantifying the restoration of activity in primary care. Results: During the first pandemic year, the number of samples received was reduced by 26.7, 22.6, and 22.5% for molecular detection of HPV or serological HCV and HIV status respectively. The highest decrease was observed during the first wave with 70, 40, and 26.7% for HPV, HCV, and HIV. As expected, new diagnoses also decreased by 35.4, 58.2, and 40.5% for HPV, HCV, and HIV respectively during the first year of the pandemic. In the second year of the pandemic, the number of samples remained below pre-pandemic period levels for HCV (-3.6%) and HIV (-9.3%) but was slightly higher for HPV (8.0%). The new diagnoses in the second year of the pandemic were -16.1, -46.8, and -18.6% for HPV, HCV, and HIV respectively. Conclusions: Undoubtedly, an important number of new HPV, HCV, and HIV infections were lost during the COVID-19 pandemic, and surveillance programs were disrupted as a consequence of collapse of the health system. It is a priority to reinforce these surveillance programs as soon as possible in order to detect undiagnosed cases before the associated morbidity-mortality increases. New pandemic waves could increase the risk of reversing the achievements made over the last few decades.


Asunto(s)
Alphapapillomavirus , COVID-19 , Infecciones por VIH , Hepatitis C , Infecciones por Papillomavirus , COVID-19/epidemiología , Infecciones por VIH/epidemiología , Hepacivirus , Hepatitis C/epidemiología , Humanos , Pandemias , Papillomaviridae , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/epidemiología
8.
Front Immunol ; 13: 959729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268018

RESUMEN

T cell exhaustion caused by continuous antigen stimulation in chronic viral infections and the tumor microenvironment is a major barrier to successful elimination of viruses and tumor cells. Although immune checkpoint inhibitors should reverse T cell exhaustion, shortcomings, such as off-target effects and single targets, limit their application. Therefore, it is important to identify molecular targets in effector T cells that simultaneously regulate the expression of multiple immune checkpoints. Over the past few years, non-coding RNAs, including microRNAs and long non-coding RNAs, have been shown to participate in the immune response against viral infections and tumors. In this review, we focus on the roles and underlying mechanisms of microRNAs and long non-coding RNAs in the regulation of T cell exhaustion during chronic viral infections and tumorigenesis. We hope that this review will stimulate research to provide more precise and effective immunotherapies against viral infections and tumors.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Virosis , Humanos , Linfocitos T , Inhibidores de Puntos de Control Inmunológico , Neoplasias/genética , Neoplasias/terapia , Virosis/genética , Microambiente Tumoral/genética
9.
Immunotherapy ; 13(6): 509-525, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626932

RESUMEN

In recent years, immune-checkpoint inhibitors (ICIs) have represented one of the major breakthroughs in advanced non-small cell lung cancer treatment scenario. However, enrollment in registering clinical trials is usually restricted, since frail patients (i.e., elderly, individuals with poor performance status and/or active brain metastases), as well as patients with chronic infections or who take concurrent medications, such as steroids, are routinely excluded. Thus, safety and efficacy of ICIs for these subgroups have not been adequately assessed in clinical trials, although these populations often occur in clinical practice. We reviewed the available data regarding the use of ICIs in these 'special' populations, including a focus on the issues raised by the administration of immunotherapy in lung cancer patients infected with Sars-Cov-2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Poblaciones Vulnerables , Quimioterapia Combinada , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia , Selección de Paciente
10.
Pathogens ; 9(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093173

RESUMEN

Fc gamma receptors (FcγRs) are widely expressed on a variety of immune cells and play a myriad of regulatory roles in the immune system because of their structural diversity. Apart from their indispensable role in specific binding to the Fc portion of antibody subsets, FcγRs manifest diverse biological functions upon binding to their putative ligands. Examples of such manifestation include phagocytosis, presentation of antigens, mediation of antibody-dependent cellular cytotoxicity, anaphylactic reactions, and the promotion of apoptosis of T cells and natural killer cells. Functionally, the equilibrium between activating and inhibiting FcγR maintains the balance between afferent and efferent immunity. The γ subunit of the immunoglobulin Fc receptor (FcRγ) is a key component of discrete immune receptors and Fc receptors including the FcγR family. Furthermore, FcγRs exert a key role in terms of crosslinking the innate and adaptive workhorses of immunity. Ablation of one of these receptors might positively or negatively influence the immune response. Very recently, we discovered that FcRγ derived from natural cytotoxicity triggering receptor 1 (NCR1) curtails CD8+ T cell expansion and thereby turns an acute viral infection into a chronic one. Such a finding opens a new avenue for targeting the FcγRs as one of the therapeutic regimens to boost the immune response. This review highlights the structural heterogeneity and functional diversity of the ubiquitous FcγRs along with their featured subunit, FcRγ.

11.
Oncoimmunology ; 9(1): 1747349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363117

RESUMEN

Exhaustion cripples T cell effector responses against metastatic cancers and chronic infections alike. There has been considerable interest in understanding the molecular and cellular mechanisms driving T cell exhaustion in human cancers fueled by the success of immunotherapy drugs especially the checkpoint receptor blockade (CRB) inhibitory antibodies that reverses T cell functional exhaustion. The current understanding of molecular mechanism of T cell exhaustion has been elucidated from the studies utilizing murine models of chronic viral infections. These studies have formed the basis for much of our understanding of the process of exhaustion and proven vital to developing anti-exhaustion therapies against human cancers. In this review, we discuss the T cell exhaustion differentiation pathway in cancers and chronic viral infections and explore how the transcription factors expression dynamics play role in T cell exhaustion fate choices and maturation. Finally, we summarize the role of some of the most important transcription factors involved in T cell functional exhaustion and construct exhaustion specific signaling pathway maps.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Humanos , Inmunoterapia , Activación de Linfocitos , Ratones , Neoplasias/tratamiento farmacológico , Factores de Transcripción
12.
J Infect Dev Ctries ; 12(6): 485-491, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31940301

RESUMEN

INTRODUCTION: Human Herpesvirus 8 (HHV8) is known to be the cause of the malignant tumour named Kaposi's sarcoma. It is believed to induce an intense modification of cell metabolism in endothelial cells. In this work we analysed the role of anti-HHV8 antibodies in both the insulin and glucose uptake of HHV8-infected primary human endothelial cells (HUVEC). METHODOLOGY: Western blotting, immunofluorescence and radiolabelled glucose were employed to assess the pPI3K expression, insulin binding and glucose-uptake by HUVEC cells, respectively. RESULTS: We confirmed that HHV8-infection is able to enhance both insulin binding and glucose-uptake in HHV8-infected primary endothelial cells; in addition, we found that anti-HHV8 specific antibodies are able to further increase both insulin and glucose uptake during the late latent phase of HHV8-infection in vitro. CONCLUSIONS: These findings suggest that a specific immune response to HHV8-infection may cooperate in boosting the cell metabolism, further enhancing the already increased insulin binding and glucose-uptake in HHV8-infected cells, which is a peculiar property of several oncogenic viruses.

13.
Curr Neuropharmacol ; 15(7): 996-1009, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28294067

RESUMEN

BACKGROUND: Inflammation is a part of the first line of defense of the body against invasive pathogens, and plays a crucial role in tissue regeneration and repair. A proper inflammatory response ensures the suitable resolution of inflammation and elimination of harmful stimuli, but when the inflammatory reactions are inappropriate it can lead to damage of the surrounding normal cells. The relationship between infections and Alzheimer's Disease (AD) etiology, especially lateonset AD (LOAD) has been continuously debated over the past three decades. METHODS: This review discusses whether infections could be a causative factor that promotes the progression of AD and summarizes recent investigations associating infectious agents and chronic inflammation with AD. Preventive and therapeutic approaches to AD in the context of an infectious etiology of the disease are also discussed. RESULTS: Emerging evidence supports the hypothesis of the role of neurotropic viruses from the Herpesviridae family, especially Human herpesvirus 1 (HHV-1), Cytomegalovirus (CMV), and Human herpesvirus 2 (HHV-2), in AD neuropathology. Recent investigations also indicate the association between Hepatitis C virus (HCV) infection and dementia. Among bacteria special attention is focused on spirochetes family and on periodontal pathogens such as Porphyromonas gingivalis or Treponema denticola that could cause chronic periodontitis and possibly contribute to the clinical onset of AD. CONCLUSION: Chronic viral, bacterial and fungal infections might be causative factors for the inflammatory pathway in AD.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/inmunología , Enfermedades Transmisibles/fisiopatología , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Animales , Enfermedades Transmisibles/terapia , Humanos , Inflamación/fisiopatología , Inflamación/prevención & control , Inflamación/terapia
14.
Front Immunol ; 5: 526, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400632

RESUMEN

Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.

15.
J Clin Cell Immunol ; 52014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25705565

RESUMEN

HIV-1/HCV co-infection is a significant health problem. Highly active antiretroviral treatment (HAART) against HIV-1 has proved to be fairly successful. On the other hand, direct acting antiviral drugs against HCV have improved cure rates but high cost and development of drug resistance are important concerns. Therefore PEGylated interferon (PEG-IFN) and ribavirin (RBV) still remain essential components of HCV treatment, and identification of host factors that predict IFN/RBV treatment response is necessary for effective clinical management of HCV infection. Impaired dendritic cell (DC) and T cell responses are associated with HCV persistence. It has been shown that IFN/RBV treatment enhances HCV-specific T cell functions and it is likely that functional restoration of DCs is the underlying cause. To test this hypothesis, we utilized an antibody cocktail (consisting of DC maturation, adhesion and other surface markers) to perform comprehensive phenotypic characterization of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in a cohort of HIV-1/HCV co-infected individuals undergoing IFN/RBV treatment. Our results show that pre-treatment frequencies of mDCs are lower in non-responders (NRs) compared to responders (SVRs) and healthy controls. Although, the treatment was able to restore the frequency of mDCs in NRs, it downregulated the frequency of CCR7+, CD54+ and CD62L+ mDCs. Pre-treatment frequencies of pDCs were lower in NRs and decreased further upon treatment. Compared to SVRs, NRs exhibited higher ratio of PD-L1+/CD86+ pDCs prior to treatment; and this ratio remained high even after treatment. These findings demonstrate that enumeration and phenotypic assessment of DCs before/during therapy can help predict the treatment outcome. We also show that before treatment, PBMCs from SVRs secrete higher amounts of IFN-γ compared to controls and NRs. Upon genotyping IFNL3 polymorphisms rs12979860, rs4803217 and ss469415590, we found rs12979860 to be a better predictor of treatment outcome. Collectively, our study led to identification of important correlates of IFN/RBV treatment response in HIV-1/HCV co-infected individuals.

16.
Virology (Auckl) ; 4: 1-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25512691

RESUMEN

Persistent infections with human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are a major cause of morbidity and mortality worldwide. As sentinels of our immune system, dendritic cells (DCs) play a central role in initiating and regulating a potent antiviral immune response. Recent advances in our understanding of the role of DCs during HIV-1 and HCV infection have provided crucial insights into the mechanisms employed by these viruses to impair DC functions in order to evade an effective immune response against them. Modulation of the immunological synapse between DC and T-cell, as well as dysregulation of the crosstalk between DCs and natural killer (NK) cells, are emerging as two crucial mechanisms. This review focuses on understanding the interaction of HIV-1 and HCV with DCs not only to understand the immunopathogenesis of chronic HIV-1 and HCV infection, but also to explore the possibilities of DC-based immunotherapeutic approaches against them. Host genetic makeup is known to play major roles in infection outcome and rate of disease progression, as well as response to anti-viral therapy in both HIV-1 and HCV-infected individuals. Therefore, we highlight the genetic variations that can potentially affect DC functions, especially in the setting of chronic viral infection. Altogether, we address if DCs' potential as critical effectors of antiviral immune response could indeed be utilized to combat chronic infection with HIV-1 and HCV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA