RESUMEN
Perovskite solar cells have emerged as a potential competitor to the silicon photovoltaic technology. The most representative perovskite cells employ SnO2 and spiro-OMeTAD as the charge-transport materials. Despite their high efficiencies, perovskite cells with such a configuration show unsatisfactory lifespan, normally attributed to the instability of perovskites and spiro-OMeTAD. Limited attention was paid to the influence of SnO2, an inorganic material, on device stability. Here we show that improving SnO2 with a redox interfacial modifier, cobalt hexammine sulfamate, simultaneously enhances the power-conversion efficiency (PCE) and stability of the perovskite solar cells. Redox reactions between the bivalent cobalt complexes and oxygen lead to the formation of a graded distribution of trivalent and bivalent cobalt complexes across the surface and bulk regions of the SnO2. The trivalent cobalt complex at the top surface of SnO2 raises the concentration of (SO3NH2)- which passivates uncoordinated Pb2+ and relieves tensile stress, facilitating the formation of perovskite with improved crystallinity. Our approach enables perovskite cells with PCEs of up to 24.91%. The devices retained 93.8% of their initial PCEs after 1000 hours of continuous operation under maximum power point tracking. These findings showcase the potential of cobalt complexes as redox interfacial modifiers for high-performance perovskite photovoltaics.
RESUMEN
Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12â M HCl) and strong base (5â M NaOH) for at least 10â days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8â mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.
RESUMEN
P,N phosphinoquinoline based ligands differing by the nature of the phosphorus substituent (i Pr, Ph) were employed to synthesize a series of cobalt(II) complexes ([LCoBr2 ], [L2 CoBr](PF6 ) and [L'2 CoBr](PF6 )). The latter were obtained in high yield and characterized among others by X-ray analysis and elemental analysis. Complex [L2 CoBr](PF6 ) showed a very good catalytic activity for the hydrosilylation of various ketones. The catalysis proceeds at a low catalytic loading (1â mol %) with only 1 equivalent of Ph2 SiH2 in mild conditions and was efficient with aliphatic or aromatic ketones giving moderate to excellent yields of the corresponding silylated ether.
RESUMEN
Given the great importance of cobalt catalysts supported by benchmark bis(imino)pyridine in the (oligo)polymerization, a series of dibenzopyran-incorporated symmetrical 2,6-bis(imino) pyridyl cobalt complexes (Co1-Co5) are designed and prepared using a one-pot template approach. The structures of the resulting complexes are well characterized by a number of techniques. After activation with either methylaluminoxane (MAO) or modified MAO (MMAO), the complexes Co1-Co4 are highly active for ethylene polymerization with a maximum activity of up to 7.36 × 106 g (PE) mol-1 (Co) h-1 and produced highly linear polyethylene with narrow molecular weight distributions, while Co5 is completely inactive under the standard conditions. Particularly, complex Co3 affords polyethylene with high molecular weights of 85.02 and 79.85 kg mol-1 in the presence of MAO and MMAO, respectively. The 1H and 13C NMR spectroscopy revealed the existence of vinyl end groups in the resulting polyethylene, highlighting the predominant involvement of the ß-H elimination reaction in the chain-termination process. To investigate the mechanism underlying the variation of catalytic activities as a function of substituents, multiple linear regression (MLR) analysis was performed, showing the key role of open cone angle (θ) and effective net charge (Q) on catalytic activity.
RESUMEN
The four new complexes, [Cu(HL1)(L2)Cl] (1), [Cu(HL1)(L1)]âClâ2H2O (2), [Co(L1)2]âCl (3) and [Cd(HL1)I2]âdmso (4), have been prepared by one-pot reactions of the respective chloride or iodide metal salt with a non-aqueous solution of the polydentate Schiff base, HL1, resulted from in situ condensation of benzhydrazide and 2-pyridinecarboxaldehyde, while a ligand HL2, in case of 1, has been formed due to the oxidation of 2-pyridinecarboxaldehyde under reaction conditions. The crystallographic analysis revealed that the molecular building units in 1-4 are linked together into complex structures by hydrogen bonding, resulting in 1D, 2D and 3D supramolecular architectures for 1, 2 and 4, respectively, and the supramolecular trimer for 3. The electronic structures of 1-4 were investigated by the DFT theoretical calculations. The non-covalent interactions in the crystal structures of 1-4 were studied by means of the Hirshfeld surface analysis and the QTAIM theory with a special focus on the C-Hâ¯Cl bonding. From the DFT/DLPNO-CCSD(T) calculations, using a series of charged model {R3C-H}0â¯Cl- assemblies, we propose linear regressions for assessment of the interaction enthalpy (ΔH, kcal mol-1) and the binding energy (BE, kcal mol-1) between {R3C-H}0 and Cl- sites starting from the electron density at the bond critical point (ρ(rBCP), a.u.): ΔH = -678 × ρ(r) + 3 and BE = -726 × ρ(r) + 4. It was also has been found that compounds 1, 3 and 4 during in vitro screening showed an antibacterial activity toward the nine bacteria species, comprising both Gram-positive and Gram-negative, with MIC values ranging from 156.2 to 625 mg/L. The best results have been obtained against Acinetobacter baumannii MßL.
Asunto(s)
Complejos de Coordinación , Bases de Schiff , Bases de Schiff/química , Ligandos , Cadmio , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Cobre/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/químicaRESUMEN
Photoelectrochemical reduction of CO2 is a promising approach for renewable fuel production. We herein report a novel strategy for preparation of hybrid photocathodes by immobilizing molecular cobalt catalysts on TiO2 -protected n+ -p Si electrodes (Si|TiO2 ) coated with multiwalled carbon nanotubes (CNTs) by π-π stacking. Upon loading a composite of CoII (BrqPy) (BrqPy=4',4''-bis(4-bromophenyl)-2,2' : 6',2'' : 6'',2'''-quaterpyridine) catalyst and CNT on Si|TiO2 , a stable 1-Sun photocurrent density of -1.5â mA cm-2 was sustained over 2â h in a neutral aqueous solution with unity Faradaic efficiency and selectivity for CO production at a bias of zero overpotential (-0.11â V vs. RHE), associated with a turnover frequency (TOFCO ) of 2.7â s-1 . Extending the photoelectrocatalysis to 10â h, a remarkable turnover number (TONCO ) of 57000 was obtained. The high performance shown here is substantially improved from the previously reported photocathodes relying on covalently anchored catalysts.
RESUMEN
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of ß-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Asunto(s)
Cobalto , Paladio , Alquilación , Catálisis , EstereoisomerismoRESUMEN
Studying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum. Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable π-π stacking onto graphene. In contrast to expectations, we observed the formation of nanodroplets on graphene for a drop-cast sample and microcrystallites localized at grain boundaries and defects after thermal sublimation.
Asunto(s)
Chalconas/química , Cobalto/química , Complejos de Coordinación/química , Grafito/química , LigandosRESUMEN
Three novel Co(II) complexes of the type [Co(C4H5O2)2L2] (where C4H5O2 is methacrylate anion; L = C3H4N2 (imidazole; HIm) (1), C4H6N2 (2-methylimidazole; 2-MeIm) (2), C5H8N2 (2-ethylimidazole; 2-EtIm) (3)) have been synthesized and characterized by elemental analysis, IR and UV-Vis spectroscopic techniques, thermal analysis and single crystal X-ray diffraction. X-ray crystallography revealed for complexes (1) and (2) distorted trigonal bipyramid stereochemistry for Co(II), meanwhile for complex (3) evidenced that the unit cell comprises three molecular units with interesting structural features. In each unit, both stereochemistry adopted by metallic ion and coordination modes of carboxylate anions are different. The screening of antimicrobial activity revealed that Candida albicans planktonic cells were the most susceptible, with minimal inhibitory concentration (MIC) values of 7.8 µg/mL for complexes (1) and (2) and 15.6 µg/mL for complex (3). Complexes (1) and (2) proved to be more active than complex (3) against the tested bacterial strains, both in planktonic and biofilm growth state, with MIC and minimal biofilm eradication concentration (MBEC) values ranging from 15.6 to 62.5 µg/mL, the best antibacterial effects being noticed against Staphylococcus aureus and Pseudomonas aeruginosa. Remarkably, the MBEC values obtained for the four tested bacterial strains were either identical or even lower than the MIC ones. The cytotoxicity assay indicated that the tested complexes affected the cellular cycle of HeLa, HCT-8, and MG63 cells, probably by inhibiting the expression of vimentin and transient receptor potential canonical 1 (TRPC1). The obtained biological results recommend these complexes as potential candidates for the development of novel anti-biofilm agents.
Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobalto/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Imidazoles/química , Imidazoles/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Plancton/efectos de los fármacosRESUMEN
While oxidation of 5,5',15,15'-tetramesityl-10-10'-linked 3NH-corrole dimer with DDQ gave the corresponding triply linked 2NH-corrole tape, the use of an equimolar amount of p-chloranil as a milder oxidant resulted in the formation of a 10-10'-linked neutral 2NH-corrole radical dimer as a stable product. The stability of this peculiar product is ascribed largely to strong antiferromagnetic interaction of the two spins. Further oxidation of this diradical produced corrole tape, suggesting its involvement as a reaction intermediate to the corrole tape. Oxidation of 10-10'-linked bis-pyridine-coordinated CoIII corrole dimer with DDQ produced a cobalt corrole radical dimer and a doubly linked corrole dimer both as stable compounds bearing pyridine and cyanide axial ligands. This type of oxidative transformation involving neutral diradical intermediates is a unique reaction mechanism specific for corrole dimers.
RESUMEN
To explore the structure-function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6-[6-(1,1-di-pyridin-2-yl-ethyl)-pyridin-2-ylmethyl]-[2,2']bipyridinyl (Py3Me-Bpy). These modifications resulted in significantly improved stability and activity in both electro- and photocatalytic HER in neutral water. [Co(Py3Me-Bpy)(OH2 )](PF6 )2 catalyzes the electrolytic HER at -1.3â V (vs. SHE) for 20â hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pHâ 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoI species. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2 released from the protonation of CoII -H species.
RESUMEN
Two novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with tert-butyl(diphenyl)phosphine (PtBuPh2) and (S)-(+)neomenthyldiphenylphosphine [(S)-NMDPP]. The crystal structure of the former was determined by single-crystal X-ray diffraction studies. The two complexes were then used in combination with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene: crystalline highly syndiotactic 1,2 poly(1,3-butadiene)s were obtained, with a 1,2 content and a syndiotactic index (percentage of syndiotactic triads [rr]) up to 95% and 85%, respectively. The results obtained further support and confirm what was already observed in the polymerization of 1,3-butadiene with CoCl2(PRPh2)2-MAO (R = methyl, ethyl, normal-propyl, iso-propyl, and cyclohexyl): the nature of the phosphine ligand strongly affects the polymerization stereoselectivity, the polymer syndiotacticity increasing with increasing phosphine ligand steric hindrance.
Asunto(s)
Butadienos/química , Cobalto/química , Complejos de Coordinación/síntesis química , Fosfinas/química , Catálisis , Complejos de Coordinación/química , Ligandos , Modelos Moleculares , Estructura Molecular , PolimerizacionRESUMEN
There is a demand to develop molecular catalysts promoting the hydrogen evolution reaction (HER) with a high catalytic rate and a high tolerance to various inhibitors, such as CO and O2 . Herein we report a cobalt catalyst with a penta-dentate macrocyclic ligand (1-Co), which exhibits a fast catalytic rate (TOF=2210â s-1 ) in aqueous pHâ 7.0 phosphate buffer solution, in which proton transfer from a dihydrogen phosphate anion (H2 PO4 - ) plays a key role in catalytic enhancement. The electrocatalyst exhibits a high tolerance to inhibitors, displaying over 90 % retention of its activity under either CO or air atmosphere. Its high tolerance to CO is concluded to arise from the kinetically labile character of undesirable CO-bound species due to the geometrical frustration posed by the ligand, which prevents an ideal trigonal bipyramid being established.
RESUMEN
Growing antimicrobial resistance is considered a potential threat for human health security by health organizations, such as the WHO, CDC and FDA, pointing to MRSA as an example. New antibacterial drugs and complex derivatives are needed to combat the development of bacterial resistance. Six new copper and cobalt complexes of azole derivatives were synthesized and isolated as air-stable solids and characterized by melting point analyses, elemental analyses, thermogravimetric analyses (TGA), and infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that the complexes had 1:1 (M:L) stoichiometries and tetrahedral geometries, the latter being supported by DFT calculations. The antibacterial activities of the metal complexes by themselves and combined with silver nanoparticles (AgNPs; 2 µg mL-1) were assessed in vitro by broth microdilution assays against eight bacterial strains of clinical relevance. The results showed that the complexes alone exhibited moderate antibacterial activities. However, when the metal complexes were combined with AgNPs, their antibacterial activities increased (up to 10-fold in the case of complex 5), while human cell viabilities were maintained. The minimum inhibitory concentration (MIC50) values were in the range of 25-500 µg mL-1. This study thus presents novel approaches for the design of materials for fighting bacterial resistance. The use of azole complexes combined with AgNPs provides a new alternative against bacterial infections, especially when current treatments are associated with the rapid development of antibiotic resistance.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Azoles/química , Azoles/farmacología , Nanopartículas del Metal/química , Plata/química , Bacterias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Coloides , Cobre/química , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Modelos Moleculares , Estructura Molecular , Análisis Espectral , TermogravimetríaRESUMEN
Associating a metal-based catalyst to a carbon-based nanomaterial is a promising approach for the production of solar fuels from CO2 . Upon appending a CoII quaterpyridine complex [Co(qpy)]2+ at the surface of multi-walled carbon nanotubes, CO2 conversion into CO was realized in water at pHâ 7.3 with 100 % catalytic selectivity and 100 % Faradaic efficiency, at low catalyst loading and reduced overpotential. A current density of 0.94â mA cm-2 was reached at -0.35â V vs. RHE (240â mV overpotential), and 9.3â mA cm-2 could be sustained for hours at only 340â mV overpotential with excellent catalyst stability (89 095 catalytic cycles in 4.5â h), while 19.9â mA cm-2 was met at 440â mV overpotential. Such a hybrid material combines the high selectivity of a homogeneous molecular catalyst to the robustness of a heterogeneous material. Catalytic performances compare well with those of noble-metal-based nano-electrocatalysts and atomically dispersed metal atoms in carbon matrices.
RESUMEN
A family of cobalt complexes bearing the trop2 NH [bis(5-H-dibenzo[a,d]cyclohepten-5-yl)-amine] and 2,2'-bpy (2,2'-bipyridine) chelate ligands were prepared and fully characterized. The compounds [Co(trop2 N)(bpy)], [Co(trop2 NH)(bpy)]+ , and [Co(trop2 N)(bpy)]+ are cobalt complexes interrelated by one-electron redox processes and/or proton transfer. Two limiting resonance structures can be used to describe the paramagnetic complex [Co(trop2 N)(bpy)]+ : [CoII (trop2 N- )(bpy)]+ (CoII amido) and [CoI (trop2 Nâ )(bpy)]+ (CoI -aminyl radical). Structural data, DFT calculations, and reactivity toward H-abstraction indicate a slightly higher contribution of the aminyl radical form to the ground state of [Co(trop2 N)(bpy)]+ . The results described here complete the series of Groupâ 9 metal aminyl radical complexes bearing the diolefin amine ligand trop2 NH.
RESUMEN
The racemic carbonate complex [Co(en)2 O2 CO](+) Cl(-) (en=1,2-ethylenediamine) and (S)-[H3 NCH((CH2 )n NHMe2 )CH2 NH3 ](3+) 3 Cl(-) (n=1-4) react (water, charcoal, 100 °C) to give [Co(en)2 ((S)-H2 NCH((CH2 )n NHMe2 )CH2 NH2 )](4+) 4 Cl(-) (3 a-d H(4+) 4 Cl(-) ) as a mixture of Λ/Δ diastereomers that separate on chiral-phase Sephadex columns. These are treated with NaOH/Na(+) BArf (-) (BArf =B(3,5-C6 H3 (CF3 )2 )4 ) to give lipophilic Λ- and Δ-3 a-d(3+) 3 BArf (-) , which are screened as catalysts (10â mol %) for additions of dialkyl malonates to nitroalkenes. Optimal results are obtained with Λ-3 c(3+) 3 BArf (-) (CH2 Cl2 , -35 °C; 98-82 % yields and 99-93 % ee for six ß-arylnitroethenes). The monofunctional catalysts Λ- and Δ-[Co(en)3 ](3+) 3 BArf (-) give enantioselectivities of <10 % ee with equal loadings of Et3 N. The crystal structure of Δ-3 a H(4+) 4 Cl(-) provides a starting point for speculation regarding transition-state assemblies.
RESUMEN
Preparing efficient and robust water oxidation catalyst (WOC) with inexpensive materials remains a crucial challenge in artificial photosynthesis and for renewable energy. Existing heterogeneous WOCs are mostly metal oxides/hydroxides immobilized on solid supports. Herein we report a newly synthesized and structurally characterized metal-organic hybrid compound [{Co3 (µ3 -OH)(BTB)2(dpe)2} {Co(H2O)4(DMF)2}0.5]n â n H2O(Co-WOC-1) as an effective and stable water-oxidation electrocatalyst in an alkaline medium. In the crystal structure of Co-WOC-1, a mononuclear Co(II) complex {Co(H2O)4(DMF)2}(2+) is encapsulated in the void space of a 3D framework structure and this translationally rigid complex cation is responsible for a remarkable electrocatalytic WO activity, with a catalytic turnover frequency (TOF) of 0.05â s(-1) at an overpotential of 390â mV (vs. NHE) in 0.1 m KOH along with prolonged stability. This host-guest system can be described as a "ship-in-a-bottle", and is a new class of heterogeneous WOC.
RESUMEN
A new pentadentate oxime has been designed to drive the preferential coordination favored by Co(I) in catalysts used for proton/water reduction. The ligand incorporates water upon metal coordination and is water soluble. This Co(III) species is doubly reduced to Co(I) and exhibits H(+) reduction activity in the presence of weak acids in MeCN and evolves H2 upon protonation suggesting that the ligand design increases catalyst effectiveness. Superior catalysis is observed in water with a turnover number (TON) of 5700 over 18â h. However, the catalyst yields Co-based nanoparticles, indicating that the solvent media may dictate the nature of the catalyst.
RESUMEN
The sodium salts of anionic chiral cobalt(III) complexes (CCC(-) Na(+) ) have been found to be efficient catalysts of the asymmetric Povarov reaction of easily accessible dienophiles, such as 2,3-dihydrofuran, ethyl vinyl ether, and an N-protected 2,3-dihydropyrrole, with 2-azadienes. Ring-fused tetrahydroquinolines with up to three contiguous stereogenic centers were thus obtained in high yields, excellent diastereoselectivities (endo/exo up to >20:1), and high enantioselectivities (up to 95:5 e.r.).