Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Anal Biochem ; 687: 115459, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38182031

RESUMEN

The combination of nanomaterials possessing distinct characteristics and the precision of aptamers facilitates the creation of biosensors that exhibit exceptional selectivity and sensitivity. In this manuscript, we present a highly sensitive aptasensor that utilizes the distinctive characteristics of MnO2 nanoflowers and gold nanoparticles to selectively detect ampicillin (AMP). In this aptasensor, the mechanism of signal change is attributed to the difference in the oxidase-mimicking activity of MnO2 nanoflowers in the presence of a free sequence. The inclusion of AMP hindered the creation of a double-stranded DNA configuration through its binding to the aptamer, resulting in an observable alteration in absorbance. The relative absorbance varied linearly with the concentration of AMP in the range of 70 pM to 10 nM with a detection limit of 21.7 pM. In general, the colorimetric aptasensor that has been developed exhibits exceptional selectivity and remarkable stability. It also demonstrates favorable performance in human serum, making it a highly reliable diagnostic tool. Additionally, its versatility is noteworthy as it holds great potential for detecting various antibiotics present in complex samples by merely replacing the utilized sequences with new ones.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Oro , Límite de Detección , Colorimetría/métodos , Compuestos de Manganeso , Óxidos , Técnicas Biosensibles/métodos , Ampicilina
2.
Anal Biochem ; 678: 115286, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591336

RESUMEN

In this study, a label-free aptasensor utilizing colorimetric properties was developed to detect Pb2+ with high sensitivity. The approach involved applying modified aptamer which enhanced the oxidase-mimicking activity of MnO2 nanoflowers. This innovative method provides an efficient means for monitoring Pb2+ ions without requiring any labeling techniques. The fundamental principle of this aptasensor is based on the adsorption of a modified aptamer onto MnO2 nanoflowers' surface, which in turn increases their affinity for chromogenic substrates and enhances their catalytic activity. The proposed aptasensor exploits the high sensitivity due to the extension of the aptamer sequence length by terminal deoxynucleotidyl transferase (TdT). Under optimum experimental conditions, the developed colorimetric aptasensor indicated a linear detection range from 4 to 80 nM with a limit of detection (LOD) of 1.4 nM. Moreover, the aptasensor successfully monitored Pb2+ in the drinking water, milk and human serum samples. Henceforth, the colorimetric aptasensor exhibited in this study possesses several benefits such as uncomplicated operation, cost-effectiveness, label-free detection and remarkable sensitivity. Thus rendering it a suitable option for analyzing intricate samples.


Asunto(s)
Colorimetría , Plomo , Humanos , Compuestos de Manganeso , Óxidos , Adsorción , ADN Nucleotidilexotransferasa , Oligonucleótidos
3.
Anal Biochem ; 676: 115233, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433362

RESUMEN

Exosomes derived from lung cancer typically contain the genetic information of the donor cells. Therefore, exosomes contribute to early diagnosis, treatment effectiveness evaluation, and prognosis assessment of cancer. Based on the biotin-streptavidin system and MXenes nanomaterial, a dual-effect amplification method had been developed to construct an ultrasensitive colorimetric aptasensor for detecting exosomes. MXenes can enhance the loading of aptamer and biotin as the high specific surface area. Biotin-streptavidin system can increase the amount of horseradish peroxidase-linked (HRP-linked) streptavidin, considerably boosting the color signal of the aptasensor. The proposed colorimetric aptasensor exhibited excellent sensitivity, with a detection limit of 42 particles µL-1 and a linear range of 102 to 107 particles µL-1. The constructed aptasensor showed satisfactory reproducibility, stability, and selectivity, confirming the promising application of exosomes in clinical cancer detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Estreptavidina , Biotina , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Límite de Detección
4.
Anal Bioanal Chem ; 415(17): 3559-3569, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37198360

RESUMEN

The peroxidase-like activity of Ti3C2 nanosheets (Ti3C2 NSs) was evaluated by catalytic oxidation of colorless o-phenylenediamine (OPD) into orange-yellow 2,3-diaminophenazine (DAP) with the aid of H2O2. The catalytic behavior followed the typical Michaelis-Menten kinetics. Systematic studies about the catalytic activity of Ti3C2 NSs including cytochrome C (Cyt C) electron transfer experiments, radical capture experiments, and fluorescence analysis were conducted, revealing that the catalytic mechanism of Ti3C2 NSs was attributed to nanozyme-accelerated electron transfer between substrates and nanozyme-promoted generation of active species (superoxide anion free radical (·O2-) and holes (h+)). Single-stranded DNA (ssDNA) inhibited the peroxidase-like activity of Ti3C2 NSs, and the reduced catalytic activity was ascribed to DNA-hindered substrate accessibility to nanozyme surface. Based on the DNA controllable peroxidase-mimicking activity of Ti3C2 NSs, taking microcystin-LR (MC-LR) aptamer as an example, a label-free colorimetric aptasensor was proposed for the sensitive detection of MC-LR. The colorimetric aptasensor showed a wide linear range (0.01-60 ng mL-1), low limit of detection (6.5 pg mL-1), and high selectivity. The practicality of the colorimetric aptasensor was demonstrated by detecting different levels of MC-LR in spiked real water samples; satisfactory recoveries (97.2-102.1%) and low relative standard deviations (1.16-3.72%) were obtained.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Peróxido de Hidrógeno/análisis , Titanio , ADN de Cadena Simple , Peroxidasas , Límite de Detección
5.
Cancer Sci ; 113(1): 7-16, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34747552

RESUMEN

An aptamer is a short oligonucleotide chain that can specifically recognize targeting analytes. Due to its high specificity, low cost, and good biocompatibility, aptamers as the targeting elements of biosensors have been applied widely in non-invasive tumor imaging and treatment in situ to replace traditional methods. In this review, we will summarize recent advances in using aptamer-based biosensors in tumor diagnosis. After a brief introduction of the advantage of aptamers compared with enzyme sensors and immune sensors, the different sensing designs and mechanisms based on 3 signal transduction modes will be reviewed to cover different kinds of analytical methods, including: electrochemistry analysis, colorimetry analysis, and fluorescence analysis. Finally, the prospective advantages of aptamer-based biosensors in tumor theranostics and post-treatment monitoring are also evaluated in this review.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Técnicas Biosensibles , Calorimetría , Detección Precoz del Cáncer , Técnicas Electroquímicas , Humanos , Peróxido de Hidrógeno/metabolismo , Neoplasias/metabolismo , Medicina de Precisión
6.
Mikrochim Acta ; 189(9): 362, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36044085

RESUMEN

There has been a rise in pesticide use as a result of the growing industrialization of agriculture. Organophosphorus pesticides have been widely applied as agricultural and domestic pest control agents for nearly five decades, and they remain as health and environmental hazards in water supplies, vegetables, fruits, and processed foods causing serious foodborne illness. Thus, the rapid and reliable detection of these harmful organophosphorus toxins with excellent sensitivity and selectivity is of utmost importance. Aptasensors are biosensors based on aptamers, which exhibit exceptional recognition capability for a variety of targets. Aptasensors offer numerous advantages over conventional approaches, including increased sensitivity, selectivity, design flexibility, and cost-effectiveness. As a result, interest in developing aptasensors continues to expand. This paper discusses the historical and modern advancements of aptasensors through the use of nanotechnology to enhance the signal, resulting in high sensitivity and detection accuracy. More importantly, this review summarizes the principles and strategies underlying different organophosphorus aptasensors, including electrochemical, electrochemiluminescent, fluorescent, and colorimetric ones.


Asunto(s)
Técnicas Biosensibles , Plaguicidas , Técnicas Biosensibles/métodos , Colorimetría , Nanotecnología , Compuestos Organofosforados , Plaguicidas/análisis
7.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501982

RESUMEN

Aflatoxin contamination of cattle feed is responsible for serious adverse effects on animal and human health. A number of approaches have been reported to determine aflatoxin B1 (AFB1) in a variety of feed samples using aptasensors. However, rapid analysis of AFB1 in these matrices remains to be addressed in light of the complexity of the preanalytical process. Herein we describe an optimization on the preanalytical stage to minimize the sample processing steps required to perform semi-quantitative colorimetric detection of AFB1 in cattle feed using a gold nanoparticle-based aptasensor (nano-aptasensor). The optical behavior of the nano-aptasensor was characterized in different organics solvents, with acetonitrile showing the least interference on the activity of the nan-aptasensor. This solvent was selected as the extractant agent for AFB1-containing feed, allowing for the first time, direct colorimetric detection from the crude extract (detection limit of 5 µg/kg). Overall, these results lend support to the application of this technology for the on-site detection of AFB1 in the dairy sector.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Bovinos , Animales , Aflatoxina B1/análisis , Oro , Técnicas Biosensibles/métodos , Límite de Detección
8.
Mikrochim Acta ; 188(3): 87, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33590378

RESUMEN

A new colorimetric aptasensor equipped with a novel composite of graphitic carbon nitride (g-C3N4) nanosheets and copper oxide(I) (Cu2O) nanocrystals is presented for Salmonella typhimurium (S .typhimurium). The dual-purpose structure of this composite simultaneously contributes to superb peroxidase-like activity and interaction with a label-free aptamer. Although g-C3N4@Cu2O effectively creates a visible blue color following the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in presence of hydrogen peroxide (H2O2), this catalytic activity of the composite severely decreases after the interaction with aptamers. In the presence of S. typhimurium in sample, aptamers bound to their specific target. Subsequently, g-C3N4@Cu2O catalytic activity was enhanced in proportion to S. typhimurium concentration. Under optimized conditions, this aptasensor exhibited an excellent detection performance in a range from 1.5 × 101 to 1.5 × 105 CFU/ml, with a detection limit of 15 CFU/ml. Besides, portable detection of S. typhimurium by paper-based model of this method operated successfully in just 6 min. Analysis of spiked milk samples revealed high potential of this method as a sensitive, rapid, and label-free promising tool for S. typhimurium detection. A novel composite of g-C3N4 nanosheets and Cu2O nanocrystals was constructed through this study, which represented a collection of significant properties for designing an aptasensor. The simultaneous capability of this composite for peroxidase-like activity and interaction with aptamer led to design a fast accurate biosensor for detecting as low as 15 CFU/ml Salmonella typhimurium as one of the most important foodborne pathogens which is a persistent burden for societies.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Colorimetría/métodos , Contaminación de Alimentos/análisis , Salmonella typhimurium/aislamiento & purificación , Agua/análisis , Bencidinas/química , Técnicas Biosensibles/instrumentación , Catálisis , Compuestos Cromogénicos/química , Colorimetría/instrumentación , Cobre/química , Grafito/química , Peróxido de Hidrógeno/química , Límite de Detección , Nanopartículas del Metal/química , Compuestos de Nitrógeno/química , Oxidación-Reducción , Papel
9.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540523

RESUMEN

Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorimetría , Ligandos , Técnica SELEX de Producción de Aptámeros
10.
Anal Bioanal Chem ; 411(28): 7511-7518, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31641824

RESUMEN

A label-free, rapid response colorimetric aptasensor for sensitive detection of chloramphenicol (CAP) was proposed, which was based on the strategy of ssDNA-modified gold nanoparticle (AuNP) aggregation assisted by lanthanum (La3+) ions. The AuNPs generated a color change that could be monitored in the red, green, and blue and analyzed by the smartphone imaging app. La3+, as a trigger agent, strongly combined with the phosphate groups of the surface of ssDNA-AuNPs probe, which helps create AuNP aggregation and the color change of AuNPs from red to blue. On the contrary, when mixing with CAP, the aptamer (Apt) bound to CAP to form a rigid structure of the Apt-CAP complex, and La3+ attached to the phosphate groups of the complex, which prevented the aptamer from binding to the surface of the AuNPs. As a result, the color of the AuNPs changed to violet-red. Finally, UV-vis absorption spectroscopy and the smartphone imaging app were employed to determine CAP with a lower detection limit of 7.65 nM and 5.88 nM, respectively. The proposed strategy featuring high selectivity and strong anti-interference ability for detection of CAP in practical samples was achieved. It is worth mentioning that the simple and portable colorimetric aptasensor will be used for facilitating on-site detection of food samples.


Asunto(s)
Técnicas Biosensibles/métodos , Cloranfenicol/análisis , Colorimetría/instrumentación , Oro/química , Lantano/química , Nanopartículas del Metal/química , Teléfono Inteligente , Animales , Pollos , Inocuidad de los Alimentos , Leche/química , Productos Avícolas/análisis
11.
Mikrochim Acta ; 186(5): 322, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31049692

RESUMEN

A specific and sensitive colorimetric aptasensor is described for the determination of Malachite Green (MG). It is exploiting the inhibition of the peroxidase-like activity of gold nanoparticles (AuNPs). The AuNPs act as enzyme mimics that catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to yield a dark blue solution. The catalytic activity is inhibited by hexadecyl trimethyl ammonium ion, specifically by cetyltrimethylammonium bromide (CTAB), which causes the aggregation of AuNPs. If a (negatively charged) RNA-aptamer against MG is added, it binds to the positively charged CTAB and prevents aggregation. This enhances the enzyme mimicking activity of the AuNPs and leads to the formation of a dark blue solution. However, in the presence of MG, the aptamer binds to MG, and leads to the aggregation of AuNPs again. The aggregated AuNPs possess a light blue color. A colorimetric method (best performed at 650 nm) was work out that can detect MG in a concentration range from 10 to 500 nmol L-1. The detection limit based on 3σ/k criterion is 1.8 nmol L-1. The assay is highly specific and accurate. Recoveries from spiked real samples (aquaculture water) ranged from 80% to 120%. Graphical abstract Based on the inhibition of cetyltrimethyal ammonium ion and the enhancement of RNA-aptamer, the differences of the peroxidase-like activities of AuNPs can be greatly enlarged with and without MG, by which a colorimetric aptasensor can be constructed for the detection of Malachite Green (MG).


Asunto(s)
Aptámeros de Nucleótidos/química , Cetrimonio/química , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Peroxidasa/química , Colorantes de Rosanilina/análisis , Bencidinas/química , Catálisis , Color , Peróxido de Hidrógeno/química , Límite de Detección , Oxidación-Reducción
12.
Anal Bioanal Chem ; 408(1): 327-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476919

RESUMEN

The increasing demand for easily available and low-cost diagnostics has fuelled the development of aptasensors as platforms for rapid, sensitive, and point-of-care testing of target analytes. Recently, gold nanoparticle (AuNP)-based aptasensors have attracted wide recognition owing to their color transition properties which allow real-time rapid sensing of targets. In this study, we utilized the color transition property of aptamer-functionalized AuNPs to detect and quantify estrogen receptor alpha (ERα), a key biomarker protein in breast cancer. We found that the coating of AuNPs with unmodified ERα-RNA aptamer (GGGGUCAAGGUGACCCC) makes them resistant to salt-induced aggregation. However, addition of ERα to the aptamer-protected AuNPs results in their spontaneous aggregation as evident from a color transition from wine red to deep blue. On the basis of this, we developed an ERα aptasensor, with limits of detection and quantification of 0.64 and 2.16 ng/mL, respectively; the aptasensor can efficiently detect and quantify ERα in a working range of 10 ng/mL-5µg/mL protein. Validation of the aptasensor on cellular extracts of ERα-positive MCF-7 and ERα-deficient MDA-MB-231 breast cancer cells showed a target-selective response in ERα-positive samples but not in cellular extracts of ERα-deficient breast cancer cells. Further, the small size and simple fabrication chemistry of aptamers provide an additional benefit to make the ERα aptasensor a potentially useful and cost-effective tool in point-of-care analyses of ERα.


Asunto(s)
Técnicas Biosensibles/métodos , Colorimetría/métodos , Receptor alfa de Estrógeno/análisis , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Técnicas Biosensibles/instrumentación , Colorimetría/instrumentación , Receptor alfa de Estrógeno/genética , Oro/química , Humanos , Nanopartículas del Metal/química
13.
Anal Biochem ; 458: 4-10, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24811738

RESUMEN

A highly sensitive, low-cost colorimetric aptasensor was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine. The method is based on a conformational switching of the 8-OHdG aptamer to form a G-quadruplex structure in the presence of 8-OHdG. The resulting G-quadruplex assembles into a peroxidase-like DNAzyme with hemin, which effectively catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(2-)) by H2O2 to ABTS(+), resulting in an increase in the absorption signal at 416nm along with a color change of the solution. The response signals linearly correlated with the concentration of 8-OHdG, ranging from 466pM to 247nM with a detection limit of 141pM. The relative standard deviation and the recovery were 1.97-3.47% (n=11) and 98.8-100.2%, respectively. The proposed method avoids the label and derivatization steps in common methods and allows direct analysis of the samples by the naked eye without costly instruments, which is reliable, inexpensive, and sensitive.


Asunto(s)
Aptámeros de Nucleótidos/química , Colorimetría , ADN Catalítico/metabolismo , Desoxiguanosina/análogos & derivados , G-Cuádruplex , Hemina/química , 8-Hidroxi-2'-Desoxicoguanosina , Benzotiazoles/química , Desoxiguanosina/orina , Hemina/metabolismo , Humanos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Ácidos Sulfónicos/química
14.
Food Chem ; 447: 138966, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479142

RESUMEN

In this work, a simple, convenient and cost-effective colorimetric aptasensor was successfully constructed for the detection of antibiotic residues in raw milk based on the property that aptamer (Apt) synergistically enhances the catalase-like activity of MOF-235. Under optimised conditions, the proposed colorimetric aptasensor exhibited a wide detection range (15-1500 nM) with a low detection limit (6.92 nM). Furthermore, the proposed aptasensor demonstrated high selectivity, good resistance to interference and storage stability. The proposed aptasensor was validated by spiking recovery in camel milk, cow milk and goat milk with satisfactory recoveries, which demonstrated the great potential of the aptasensor for further application in real food samples, and also suggested that MOF-235 can be used as a potential universal platform to build a sensitive detection platform for other targets.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Oxitetraciclina , Animales , Oxitetraciclina/análisis , Leche/química , Colorimetría , Aptámeros de Nucleótidos/química , Peroxidasas , Límite de Detección , Nanopartículas del Metal/química , Oro/química
15.
Talanta ; 271: 125729, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306811

RESUMEN

Given the highly mutagenic and carcinogenic nature of Aflatoxin M1 (AFM1), the quantity assessment of AFM1 residues in milk and dairy products is necessary to maintain consumer health and food safety. Herein, CRISPR-Cas12a-based colorimetric aptasensor was developed using the catalytic activity of flower-like nanozymes of MnO2 and trans-cleavage property of CRISPR-Cas12a system to quantitatively detect AFM1. The basis of the developed colorimetric aptasensor relies on whether or not the CRISPR-Cas12a system is activated, as well as the contrast in oxidase-mimicking capability exhibited by flower-like MnO2 nanozymes when AFM1 is absent or present. When AFM1 is not present in the sample, single-stranded DNA (ssDNA) is degraded by the activated CRISPR-Cas12a, and the solution turns into yellow due to the catalytic activity of the nanozymes. While, in the attendance of AFM1, ssDNA degradation does not occur due to the inactivation of the CRISPR-Cas12a. Therefore, with the adsorption of the ssDNA on the MnO2 nanozymes, their catalytic activity decreases, and the solution color becomes pale yellow due to less oxidation of the chromogenic substrate. In this aptasensor, the relative absorbance changes increased linearly from 6 to 160 ng L-1, and the detection limit was 2.1 ng L-1. The developed aptasensor displays a selective detection performance and a practical application for quantitative analysis of AFM1 in milk samples. The results of the introduced aptasensor open up the way to design other selective and sensitive aptasensors for the detection of other mycotoxins by substitution of the used sequences.


Asunto(s)
Aflatoxina M1 , Técnicas Biosensibles , Aflatoxina M1/análisis , Oxidorreductasas , Sistemas CRISPR-Cas , Colorimetría , Compuestos de Manganeso , Técnicas Biosensibles/métodos , Óxidos
16.
Talanta ; 277: 126430, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878510

RESUMEN

In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cloranfenicol , Colorimetría , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Cloranfenicol/análisis , Cloranfenicol/química , Aptámeros de Nucleótidos/química , Colorimetría/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Nanopartículas del Metal/química , Límite de Detección , Óxidos/química , Procesos Fotoquímicos , Antibacterianos/análisis , Antibacterianos/química , Tungsteno
17.
Anal Chim Acta ; 1306: 342599, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692792

RESUMEN

BACKGROUND: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection. However, they provide only one output signal, resulting in poor sensitivity and accuracy. Dual-channel ratiometric colorimetric method based on the peroxidase-like activity of nanozyme can achieve self-calibration by recording two reverse signals, providing significantly enhanced sensitivity and accuracy. RESULTS: CeO2 nanocages (CeO2 NCs) with tetra-enzyme mimetic activities (oxidase-, peroxidase-, catalase- and superoxide dismutase-like activities) were facilely synthesized using zeolitic imidazolate framework-67 (ZIF-67) as sacrificial template. The peroxidase-like activity of CeO2 NCs can be regulated by DNA, and it showed opposite response to two chromogenic substrates (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB)), which was mainly attributed to the changed affinity. On the basis of MC-LR aptamer-tunable peroxidase-like activity of CeO2 NCs in TMB and ABTS channel, a dual-channel ratiometric colorimetric aptasensor was constructed for detection of MC-LR. Compared with conventional single-signal colorimetric assays, the proposed method showed lower limit of detection (0.66 pg mL-1) and significantly enhanced sensitivity. Moreover, the practicability of the ratiometric colorimetric assay was demonstrated by detecting MC-LR in real water samples, and satisfactory recoveries (94.9-101.9 %) and low relative standard deviations (1.6-6.3 %) were obtained. SIGNIFICANCE: This work presents a nanozyme-based ratiometric colorimetric aptasensor for MC-LR detection by recording the reverse responses of two chromogenic reactions. Benefiting from the self-calibration function, the method can achieve higher sensitivity and accuracy. The short detection time and practical application in real water samples show great potential for environmental monitoring.


Asunto(s)
Cerio , Colorimetría , Toxinas Marinas , Microcistinas , Microcistinas/análisis , Colorimetría/métodos , Toxinas Marinas/análisis , Cerio/química , Aptámeros de Nucleótidos/química , Límite de Detección , Nanoestructuras/química , Técnicas Biosensibles/métodos
18.
Talanta ; 279: 126655, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098241

RESUMEN

Quarantine plant bacteria (QPB) are significant component of invasive alien species that result in substantial economic losses and serious environmental damage. Herein, a colorimetric aptasensor has been proposed based on the sandwich structure and the cascaded catalytic strategy for on-site detecting Xanthomonas hyacinthi, a type of QPB, in natural environments. The self-screened aptamer obtained through SELEX can bind to specific sites on the surface of viable organism with high affinity and specificity, which guarantees the selectivity of aptasensor. As an important part of the aptasensor, MIL-88-NH2(Fe) not only acts as a multifunctional carrier for both aptamers and glucose oxidase, but also catalyzes enzyme-like reaction because of specific surface area, amino and peroxidase-like activity. The present of Xanthomonas hyacinthi can trigger the formation of a sandwich structure and the occurrence of cascade catalytic reaction, enabling the detection with UV-Vis spectra and naked eyes. The proposed aptasensor presents a low detection limit of 2 cfu/mL and a wide linear range of 10 -107 cfu/mL. Compared to traditional detection methods for QPB, the reasonable design, high selectivity and convenience significantly improve the detection efficiency and contribute to environmental protection.

19.
Talanta ; 269: 125457, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039678

RESUMEN

Escherichia coli O157: H7 (E. coli O157: H7) is one of the most common foodborne pathogens and is widespread in food and the environment. Thus, it is significant for rapidly detecting E. coli O157: H7. In this study, a colorimetric aptasensor based on aptamer-functionalized magnetic beads, exonuclease III (Exo III), and G-triplex/hemin was proposed for the detection of E. coli O157: H7. The functional hairpin HP was designed in the system, which includes two parts of a stem containing the G-triplex sequence and a tail complementary to cDNA. E. coli O157: H7 competed to bind the aptamer (Apt) in the Apt-cDNA complex to obtain cDNA. The cDNA then bound to the tail of HP to trigger Exo III digestion and release the single-stranded DNA containing the G-triplex sequence. G-triplex/hemin DNAzyme could catalyze TMB to produce visible color changes and detectable absorbance signals in the presence of H2O2. Based on the optimal conditions, E. coli O157: H7 could be detected down to 1.3 × 103 CFU/mL, with a wide linear range from 1.3 × 103 to 1.3 × 107 CFU/mL. This method had a distinguished ability to non-target bacteria, which showed good specificity. In addition, the system was successfully applied to detect E. coli O157: H7 in milk samples.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Escherichia coli O157 , Escherichia coli O157/genética , Hemina , Colorimetría/métodos , ADN Complementario , Peróxido de Hidrógeno , Aptámeros de Nucleótidos/genética , Fenómenos Magnéticos , Microbiología de Alimentos
20.
Biosensors (Basel) ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534220

RESUMEN

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has spurred the urgent need for practical diagnostics with high sensitivity and selectivity. Although advanced diagnostic tools have emerged to efficiently control pandemics, they still have costly limitations owing to their reliance on antibodies or enzymes and require high-tech equipment. Therefore, there is still a need to develop rapid and low-cost diagnostics with high sensitivity and selectivity. In this study, we generated aptamer display particles (AdP), enabling easy fabrication of a SARS-CoV-2 detection matrix through particle PCR, and applied it to diagnosis using fluorometric and colorimetric assays. We designed two AdPs, C1-AdP and C4-AdP, displayed with SpS1-C1 and SpS1-C4 aptamers, respectively, and showed their high binding ability against SARS-CoV-2 spike protein with a concentration-dependent fluorescence increase. This enabled detection even at low concentrations (0.5 nM). To validate its use as a diagnostic tool for SARS-CoV-2, we designed a sandwich-type assay using two AdPs and high-quality aptamers targeting SARS-CoV-2 pseudoviruses. The fluorometric assay achieved a detection limit of 3.9 × 103 pseudoviruses/mL. The colorimetric assay using an amplification approach exhibited higher sensitivity, with a detection limit of 1 × 101 pseudoviruses/mL, and a broad range of over four orders of magnitude was observed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Colorimetría , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA