RESUMEN
In the face of increasingly variable cold climates and diverse individual temperature regulation demands, personal thermal management (PTM) textiles with electromagnetic shielding have obtained significant attention. However, the PTM textiles face several challenges, including single heating mode, insufficient durability, and complex preparation processes. Herein, an all-day PTM textile Cotton@PDA/AgNPs (CPANS) with energy-free PRH, energy-saving solar heating, compensatory electrical heating, electromagnetic interference (EMI) shielding, and outstanding durability is fabricated by sequentially growing polydopamine (PDA) and silver nanoparticles (AgNPs) on the cotton fabric (CF). The CPANS exhibits low mid-infrared emissivity (36.6%) and high absorptivity (70.8%), which guarantees the energy-saving heating capability. Moreover, the conductivity of the CPANS is ≈11109 S m-1, enabling an electrical heating temperature of ≈177 °C under a low voltage of 1.1 V and superb EMI shielding effectiveness (≈60 dB). The remarkable adhesive properties of the PDA ensure that the desired durability of the CPANS remains high even after rigorous physical treatments. This innovation shows enormous potential for wearable integrated garments in the future and offers a new ideal for PTM fabrics in the cold.
RESUMEN
With the rapid advancement of electronic technology, traditional textiles are challenged to keep up with the demands of wearable electronics. It is anticipated that multifunctional textile-based electronics incorporating energy storage, electromagnetic interference (EMI) shielding, and photothermal conversion are expected to alleviate this problem. Herein, a multifunctional cotton fabric with hierarchical array structure (PPy/NiCoAl-LDH/Cotton) is fabricated by the introduction of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanosheet arrays on cotton fibers, followed by polymerization and growth of continuous dense polypyrrole (PPy) conductive layers. The multifunctional cotton fabric shows a high specific areal capacitance of 754.72 mF cm-2 at 5 mA cm-2 and maintains a long cycling life (80.95% retention after 1000 cycles). The symmetrical supercapacitor assembled with this fabric achieves an energy density of 20.83 µWh cm-2 and a power density of 0.23 mWcm-2. Moreover, the excellent electromagnetic interference shielding (38.83 dB), photothermal conversion (70.2 °C at 1000 mW cm-2), flexibility and durability are also possess by the multifunctional cotton fabric. Such a multifunctional cotton fabric has great potential for using in new energy, smart electronics, and thermal management applications.
RESUMEN
The development of multifunctional cotton fabrics that are stain-resistant, antimicrobial, and easy to clean has sparked scientific interest as well as practical usefulness, owing to its medical and healthcare applications. The purpose of this study was to fabricate self-cleaning and antimicrobial cotton for final use by soaking the cotton fabric in nonfluorinated hybrid formulations based on quaternary chitosan-silane using the sol-gel process. The fluorine-free cotton fabric demonstrated high self-cleaning behavior and outstanding bacterial killing efficacy against E. coli and S. aureus bacteria, without altering the desired textile properties of cotton fabric. Remarkably, cotton textiles using the hybrid formulations HTACC-VTES (N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride-vinyltriethoxy silane) and TMCC-VTES (N, N, N-trimethyl chitosan chloride-vinyltriethoxy silane) demonstrated promising water contact angles of 147° and 142° respectively, indicating a move toward superhydrophobicity. In FTIR spectra, both treated cotton textiles had an absorption peak at 1208 cm-1 (SiOC bending), indicating a stronger interaction between silane binding agents and the cotton substrate. The treated cotton fabric with desirable features retains its stability and endurance after 12 cycles of washing for antibacterial tests and 15 cycles for wettability tests. The manufactured cotton fabric has several potential applications, such as in personal hygiene items and medical applications.
RESUMEN
Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.
Asunto(s)
Fibra de Algodón , Interacciones Hidrofóbicas e Hidrofílicas , Aceites , Agua , Agua/química , Aceites/química , Silanos/química , Propiedades de Superficie , Dióxido de Silicio/química , Nanopartículas/química , Tamaño de la PartículaRESUMEN
Cotton fabrics with zinc oxide (ZnO) coating are of significant interest due to their excellent antibacterial performance. Thus, they are widely in demand in the textile industry due to their medical and hygienic properties. However, conventional techniques used to deposit ZnO on fabric require long processing times in deposition, complex and expensive equipment, and multiple steps for deposition, such as a separate process for nanoparticle synthesis and subsequent deposition on fabric. In this study, we proposed a new method for the deposition of ZnO on fabric, using cathodic cage plasma deposition (CCPD), which is commonly used for coating deposition on conductor materials and is not widely used for fabric due to the temperature sensitivity of the fabric. The effect of gas composition, including argon and a hydrogen-argon mixture, on the properties of ZnO deposition is investigated. The deposited samples are characterized by XRD, SEM, EDS, photocatalytic, and antibacterial performance against Staphylococcus aureus and Pseudomonas aeruginosa bacteria. It is observed that ZnO-deposited cotton fabric exhibits excellent photocatalytic degradation of methylene blue and antibacterial performance, specifically when a hydrogen-argon mixture is used in CCPD. The results demonstrate that CCPD can be used effectively for ZnO deposition on cotton fabric; this system is already used in industrial-scale applications and is thus expected to be of significant interest to garment manufacturers and hospitals.
Asunto(s)
Antibacterianos , Fibra de Algodón , Staphylococcus aureus , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Catálisis , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Electrodos , Gases em Plasma/química , Gases em Plasma/farmacología , Procesos FotoquímicosRESUMEN
Fiber-shaped energy-storage devices for high energy and power density are crucial to power wearable electronics. In this work, reduced graphene oxide/carbon nanotubes/polypyrrole (GCP-op) cotton fabric with the optimal performance is prepared via a facile and cost-effective dipping-drying together with chemical polymerization approach. The structural characterizations confirm that the GCP-op cotton fabric has been successfully attached with numerous nanoparticles and carbon nanotubes, which can serve as a channel for electronical transfer. And GCP-op cotton fabric electrode displays admirable areal specific capacitance with 8397 mF cm-2at 1 mA cm-2. By combining GCP-op cathode with zinc anode, a GCP-op//PAM/ZnCl2//Zn flexible Zn-ion hybrid supercapacitor (FZHSC) is produced with 2 M polyacrylamide/ZnCl2(PAM/ZnCl2) hydrogel as the gel electrolyte. The FZHSC has superior cycle stability of 88.2%, outstanding energy density of up to 158µWh cm-2and power density at 0.5 mW cm-2. The remarkable performance proves that PPy-based material can provide more options for design and fabricate high energy flexible Zn-ion hybrid supercapacitors.
RESUMEN
Novel smart cotton diagnostic assay was developed toward onsite sensing of sweat pH variations for possible medical applications such as drug test and healthcare purposes. Humulus lupulus L. extract was obtained according to previously reported procedure. As reported by high-performance liquid chromatography (HPLC), the extract demonstrated the presence of hop acids, prenylchalcones, and prenylflavanones, which is responsible for the colorimetric changes. The extract was applied to cellulose fibers employing potassium aluminum sulfate as mordant. This was observed by the formation of mordant/xanthohumol nanoparticles onto cotton surface. The absorption spectra and CIE (Commission Internationale de l'Eclairage) Lab screening of the prepared cotton assay showed colorimetric changes in association with hypsochromic shift from 600 nm to 433 nm upon exposure to sweat simulant fluid (pH < 7). The biochromic activity of the xanthohumol-finished cotton depends mainly on the halochromic performance of the xanthohumol chromophore to show a colorimetric switch from yellow to white owing to intramolecular charge transfer in the xanthohumol molecule. No substantial defects were detected in gas-permeability and stiffness of the treated fabrics. Satisfactory fastness was approved for the xanthohumol-dyed diagnostic cotton assay.
Asunto(s)
Humulus , Humulus/química , Sudor/química , Colorimetría , Flavonoides/química , Concentración de Iones de Hidrógeno , Extractos Vegetales/químicaRESUMEN
In the present study, a hybrid cotton fabric with an enhanced ultraviolet (UV) shielding property was developed by coating with functionally activated nanocarbon (FACN) which was grafted by polyaniline (PANI) using in situ polymerization. In light of this, Teff hay biomass was used to establish the activated nanocarbon (ANC), that was subsequently given a surface functionalization using a silane coupling agent. Using the response surface (RSM) statistical analysis, the study was optimized for the weight percent of ANC and PANI with respect to the cotton fabric that was found to offer remarkable UV protection, with an ultraviolet protection factor (UPF) of 64.563, roughly 17 times more than that of primitive cotton (UPF = 3.7). The different characterization techniques, such as UV absorption, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermal behavior studies were investigated. In addition, the basic textile properties on optimized hybrid material were found to be appreciably increased. The results suggested that activated FACN made from Teff hay could be an effective alternative organic source material for developing UV protective hybrid cotton fabrics.
Asunto(s)
Eragrostis , Rayos Ultravioleta , Textiles , Compuestos de AnilinaRESUMEN
The application of plant dyes in the textile industry has been very limited due to their limited sources, incomplete color space, and narrow color gamut, etc. Therefore, studies of the color properties and color gamut of natural dyes and the corresponding dyeing processes are essential for completing the color space of natural dyes and their application. In this study, water extract from the bark of Phellodendron amurense (P. amurense) was used as a dye. Dyeing properties, color gamut, and color evaluation of dyed cotton fabrics were studied, and optimal dyeing conditions were obtained. The results showed that the optimal dyeing process was pre-mordanting with liquor ratio at 1:50, P. amurense dye concentration at 5.2 g/L, mordant concentration (aluminum potassium sulfate) at 5 g/L, dyeing temperature at 70 °C, dyeing time of 30 min, mordanting time of 15 min, and pH 5. Through the optimization of the dyeing process, a maximum color gamut range was obtained with lightness L* value from 74.33 to 91.23, a* value from -0.89 to 2.96, b* value from 4.62 to 34.08, chroma C* value from 5.49 to 34.09, and hue angle h° value from 57.35° to 91.57°. Colors from light yellow to dark yellow were obtained, among which 12 colors were identified according to the Pantone Matching Systems. The color fastness against soap-washing, rubbing, and sunlight on the dyed cotton fabrics all reached grade 3 level or above, further expanding the applicability of natural dyes.
RESUMEN
Magnetic protective fabrics with fine wearability and great protective properties are highly desirable for aerospace, national defense, and wearable protective applications. The study of the controllable preparation method of Nd3+ doped in Fe3O4 nanoparticles with supposed magnetic properties remains a challenge. The characterization of the microstructure, elemental composition, and magnetic properties of NdFe2O4 nanoparticles was verified. Then, the surface of NdFe2O4 was treated with glyceric acid to provide sufficient -OH. Subsequently, the connection of the nanoparticle by the succinimide group was studied and then grafted onto cotton fabrics as its bridging effect. The optimal loading rate of the functional fabrics with nanoparticles of an average size of 230 nm was 1.37% after a 25% alkali pretreatment. The color fatness to rubbing results showed better stability after washing and drying. The corresponding hysteresis loop indicated that the functional fabrics exhibited typical magnetism behavior with a closed "S" shape and a magnetic saturation value of 17.61 emu.g-1 with a particle size of 230 nm. However, the magnetic saturation value of the cotton fabric of 90 nm was just 4.89 emu.g-1, exhibiting controllable preparation for the aimed electromagnetic properties and great potential in radiation protective fields. The electrochemical properties of the functional fabrics exhibited extremely weak electrical conductivity caused by the movement of the magnetic dipole derived from the NdFe2O4 nanoparticles.
RESUMEN
Chemical partitioning to surfaces can influence human exposure by various pathways, resulting in adverse health consequences. Clothing can act as a source, a barrier, or a transient reservoir for chemicals that can affect dermal and inhalation exposure rates. A few clothing-mediated exposure studies have characterized the accumulation of a select number of semi-volatile organic compounds (SVOCs), but systematic studies on the partitioning behavior for classes of volatile organic compounds (VOCs) and SVOCs are lacking. Here, the cloth-air equilibrium partition ratios (KCA) for carbonyl, carboxylic acid, and aromatic VOC homologous series were characterized for cellulose-based cotton fabric, using timed exposures in a real indoor setting followed by online thermal desorption and nontargeted mass spectrometric analysis. The analyzed VOCs exhibit rapid equilibration within a day. Homologous series generally show linear correlations of the logarithm of KCA with carbon number and the logarithms of the VOC vapor pressure and octanol-air equilibrium partition ratio (KOA). When expressed as a volume-normalized partition ratio, log KCA_V values are in a range of 5-8, similar to the values for previously measured SVOCs which have lower volatility. When expressed as surface area-normalized adsorption constants, KCA_S values suggest that equilibration corresponds to a saturated surface coverage of adsorbed species. Aqueous solvation may occur for the most water-soluble species such as formic and acetic acids. Overall, this new experimental approach facilitates VOC partitioning studies relevant to environmental exposure.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Humanos , Octanoles , Textiles , Presión de VaporRESUMEN
The phyto-synthesis of silver nanoparticles and cotton dyeing with natural colorants can reduce the environmental impact of the process considerably. In this study, the extraction of natural colorants from Achillea millefolium petals was optimized by ultrasound technique. The AMP extract was applied for synthesis of silver nanoparticles (Ag NPs) on the cotton fabrics. The dyeing, antibacterial and antioxidant characteristics of cotton samples were investigated to optimize the process and evaluate its efficiency. The AMP extract had good substantivity towards cotton fabrics and the presence of tannic acid, as an environmentally-friendly mordant, further improved the absorption of AMP dye. The antibacterial and antioxidant activities of the dyed samples with AMP extract of were 50%and 60%, respectively. The addition of TA and Ag enhanced the antibacterial and antioxidant activities on the cotton samples to over 99%.
Asunto(s)
Achillea , Nanopartículas del Metal , Antibacterianos/farmacología , Antioxidantes/farmacología , Colorantes , Extractos Vegetales/farmacología , Sustancias Reductoras , Plata/farmacologíaRESUMEN
This study aims to develop a reduced graphene oxide (RGO)-silver nanoparticles (AgNPs) coating on the cotton fabric (CT) surface using photoreduction with a hydrothermal process and evaluate the antibacterial activity in a sweat environment. An ureolytic bacterium of Bacillus subtilis (HM475276) was used to generate ammonia from synthetic urine. RGO-AgNPs were synthesized on the CT surface using a moderate dosage of 1% silver ammonium complex. The analytical study reveals that spherical-shaped AgNPs of 10-50 nm size were uniformly anchored throughout the RGO sheet on the CT, further supported by X-ray photoelectron spectroscopic analysis (XPS). X-ray powder diffraction (XRD) and Energy-dispersive X-ray absorption spectroscopy (EDAX) elemental mapping confirmed Ag/AgCl formation on CT treated with sweat. The sustained release of Ag+ ions from the treated CT in the sweat solution was assessed by atomic absorption spectroscopy (AAS) and ranged from 2 to 8 ppm, correlated with antibacterial activity. The agar diffusion and solution suspension method to demonstrate the combat bacterial species were greater on RGO-AgNPs-CT than sweat-treated CT due to the suppression of Ag+ ion release caused by the deposition of Ag/AgCl. Hence, sweat-treated RGO-AgNPs-CT proved to have higher inactivation activity (45 min) than sweat-treated AgNPs-CT (60 min) due to the RGO-Ag/AgCl serving photocatalyst influencing hydroxyl radical (OH·) formation under sunlight. The RGO-AgNPs-CT has confirmed that it retains antibacterial activity after passing the laundry durability test. Together, the results showed an opportunity for improved functional fabrics that are exceptional at combating bacterial pathogens and holding up well to laundry durability tests.
Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Sudor , Antibacterianos/farmacología , Antibacterianos/química , BacteriasRESUMEN
Microencapsulation is an innovative technique having a growing application in textile finishing. Besides, marine macroalgae contain plenty of phytoconstituents used in various fields especially textile finishing. This work imparts the property of wound healing finish to cotton fabrics producing a bandage from eco-friendly algal volatile organic constituents (VOCs). VOCs extracted from Digenea simplex, Lurencea papillosa, Galaxurea oblongata, and Turbenaria decurrens Egyptian marine macroalgae scattered along the coastline of the Red sea were 0.52, 0.9, 0.87, and 0.62% (v/w), respectively. These VOCs as well as their microencapsulated (VOM) forms were finished onto cotton fabrics by a conventional pad-dry cure technique using sodium alginate (SA) as a shell wall material. The VOCs of each alga were extracted and chemically investigated using gas chromatography coupled with mass spectrometry (GC-MS). The results indicate, in addition to the identification of 125 volatile compounds, the diversity and outstanding differences in volatile composition among the 4 algae. Wound healing activities of the finished fabrics were evaluated. VOCs microcapsules-finished (VOMF) fabrics were more effective compared to VOCs-finished (VOF) fabrics and almost comparable to mebo-ointment (standard drug)-finished (MoF) fabrics. The differences in VOCs efficiencies may be attributable to the diversity in type and amount of volatiles found in the four algae. Therefore, this is a low-cost, convenient, reproducible, and scalable way to obtain encapsulated VOCs for the application in textile wound healing.
Asunto(s)
Fibra de Algodón , Algas Marinas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Cicatrización de Heridas , HumanosRESUMEN
In the study, sol-gel based TiO2 nanoparticles (NPs) were doped by Cu(II), and the surface of cotton fabric was coated with Cu-doped TiO2 NPs to develop self-cleaning and antibacterial properties. Coffee stains were introduced on the modified cotton fabric and under suntest illumination; a decrease in the color of coffee stain was followed over time via K/S value to determine self-cleaning performance. The photocurrent in a photoelectrocatalytic reactor was measured to evaluate the photocatalytic effect of Cu(II) doping. TiO2 NPs showed self-cleaning and antibacterial effects under UV-illuminated conditions. However, no effects were observed under dark (non-illuminated) conditions. The modified textiles with Cu(II) doped TiO2 NPs showed antibacterial activity against E. coli under light and dark conditions. Under the 2 h illumination period, fluctuating color changes were observed on the raw cotton fabric, and stains remained on the fabric while 78% and 100% color removals were achieved in the cotton fabrics coated by Cu doped TiO2 NPs in 1 h and 2 h, respectively.
Asunto(s)
Escherichia coli , Titanio , Antibacterianos/farmacología , TextilesRESUMEN
Natural dyes are not harmful to the environment owing to their biodegradability. For dye application to textiles, salts are necessary as mordant or electrolytes and make an environmental impact. In this paper, the influence of cationization during mercerization to the dyeing of cotton fabric with natural dye from Dactylopius coccus was researched. For this purpose, bleached cotton fabric as well as fabric cationized with Rewin OS was pre-mordanted using iron(II) sulfate heptahydrate (FeSO4·7H2O) and dyed with natural cochineal dye with and without electrolyte addition. For the characterization of surface changes after cationization, an electrokinetic analysis on SurPASS was performed and compared to pre-mordanting. For determination of dye exhaustion, the analysis of dye solution was performed on a UV/VIS spectrophotometer Cary 50 Solascreen. Spectrophotometric analysis was performed using a Datacolor 850 spectrophotometer, measuring remission "until tolerance" and the whiteness degree, color parameters, color depth (K/S), and colorfastness of dyed fabric were calculated. Levelness was determined by visual assessment. Cationized cotton fabrics showed better absorption and colorfastness. Pre-mordanting and cationization showed synergism. The electrolytes improved the process of dye absorption. However, when natural dyeing was performed on cotton fabric cationized during mercerization, similar chromacity, uniform color, and colorfastness were achieved with and without electrolyte, resulting in pure purple hue of cochineal. For achieving a violet hue, pre-mordanting with Fe-salt was needed. Therefore, salt can be reduced or even unnecessary, which makes this process of natural dyeing more environmentally friendly.
RESUMEN
Some new N- and C-modified biomolecular peptide analogues of both VV-hemorphin-5 and VV-hemorphin-7 with varied amino acids (Cys, Glu, His), 1-adamantanecarboxylic acid, and niacin (nicotinic acid) were synthesized by solid-phase peptide synthesis-Fmoc (9-fluorenylmethoxy-carbonyl) chemistry and were characterized in water solutions with different pH using spectroscopic and electrochemical techniques. Basic physicochemical properties related to the elucidation of the peptide structure at physiological pH have been also studied. The results showed that the interaction of peptide compounds with light and electricity preserves the structural and conformational integrity of the compounds in the solutions. Moreover, textile cotton fibers were modified with the new compounds and the binding of the peptides to the surface of the material was proved by FTIR and SEM analysis. Washing the material with an alkaline soap solution did not show a violation of the modified structure of the cotton. Antiviral activity against the human respiratory syncytial virus (HRSV-S2) and human adenovirus serotype 5 (HAdV-5), the antimicrobial activity against B. cereus and P. aeruginosa used as model bacterial strains and cytotoxic effect of the peptide derivatives and modified cotton textile material has been evaluated. Antimicrobial tests showed promising activity of the newly synthesized compounds against the used Gram-positive and Gram-negative bacteria. The compounds C-V, H-V, AC-V, and AH-V were found slightly more active than NH7C and NCH7. The activity has been retained after the deposition of the compounds on cotton fibers.
Asunto(s)
Antiinfecciosos , Bacterias Gramnegativas , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Fibra de Algodón , Bacterias Grampositivas , Humanos , TextilesRESUMEN
Novel reactive dyes with mono- and bi-acyl fluoride reactive groups have been designed and synthesized, which are obtained by using 2-amino-8-naphthol-6-sulfonic acid or 1-amino-8-naphthol-3,6-disulfonicacid as the coupling component and 4-aminobenzoyl fluoride (PABF) as the diazo component. Their structures have been defined by nuclear magnetic resonance spectroscopy and ultraviolet-visible spectra (UV-Vis). The novel reactive dyes were evaluated on cotton by using the exhaust dyeing method. The properties were examined in detail, and the results showed that the dye concentration of 4% (o.w.f), pH = 9, and salt-free was the most effective condition. The fixation of the novel reactive dyes on cotton was 60.27% and 64.13%, respectively. The micro-fluorine-containing reactive dyes have favorable dyeing properties owing to the covalent bond formed between the reactive group of dyes and the functional group of cotton fibers, which can achieve salt-free dyeing of cotton.
Asunto(s)
Colorantes , Fluoruros , Colorantes/química , Fibra de Algodón , Naftoles , TextilesRESUMEN
Molecularly imprinted polymers@ethylenediamine-modified carbon dots grafted on cotton fabrics (MIPs@EDA-CDs/CF) and smartphone-based fluorescence image analysis were proposed and used for the first time for the detection of 17 α-methyltestosterone (MT). The EDA-CDs were synthesized and grafted on cotton fabric before coating with the MIPs. The MIPs were synthesized using the MT as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator. The MIPs@EDA-CDs/CF were characterized using FTIR, SEM-EDS, and RGB fluorescence imaging. The fluorescence images were also taken using a smartphone and the ImageJ program was used for RGB measurement. The Δ red intensity was linearly proportional to MT concentration in the range of 100 to 1000 µg/L (R2 = 0.999) with a detection limit of 44.4 µg/L and quantification limit of 134 µg/L. The MIPs@EDA-CDs/CF could be stored at 4 °C for a few weeks and could be reused twice. The proposed method could apply for the specific determination of MT in water and sediment samples along with satisfactory recoveries of 96-104% and an acceptable relative standard deviation of 1-6% at the ppb level.
Asunto(s)
Impresión Molecular , Impresión Molecular/métodos , Carbono , Polímeros Impresos Molecularmente , Metiltestosterona , PolímerosRESUMEN
Polypyrrole (PPy) has high electrochemical activity and low cost, so it has great application prospects in wearable supercapacitors. Herein, we have successfully prepared polypyrrole/reduced graphene oxide (PPy/rGO) nanocomposite cotton fabric (NCF) by chemical polymerization, which exhibits splendid electrochemical performance compared with the individual. The addition of rGO can block the deformation of PPy caused by the expansion and contraction. The as-prepared PPy-0.5/rGO NCF electrode exhibits the brilliant specific capacitance (9300 mF cm-2at 1 mA cm-2) and the capacitance retention with 94.47% after 10 000 cycles. At the same time, the superior capacitance stability under different bending conditions and reuse capability have been achieved. All-solid-state supercapacitor has high energy density of 167µWh cm-2with a power density of 1.20 mW cm-2. Therefore, the PPy-0.5/rGO NCF electrode has a broad application prospect in high-performance flexible supercapacitor fabric electrode.