Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Angew Chem Int Ed Engl ; 63(10): e202314046, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38072825

RESUMEN

Cyclic peptides with cyclophane linkers are an attractive compound type owing to the fine-tuned rigid three-dimensional structures and unusual biophysical features. Cytochrome P450 enzymes are capable of catalyzing not only the C-C and C-O oxidative coupling reactions found in vancomycin and other nonribosomal peptides (NRPs), but they also exhibit novel catalytic activities to generate cyclic ribosomally synthesized and post-translationally modified peptides (RiPPs) through cyclophane linkage. To discover more P450-modified multicyclic RiPPs, we set out to find cryptic and unknown P450-modified RiPP biosynthetic gene clusters (BGCs) through genome mining. Synergized bioinformatic analysis reveals that P450-modified RiPP BGCs are broadly distributed in bacteria and can be classified into 11 classes. Focusing on two classes of P450-modified RiPP BGCs where precursor peptides contain multiple conserved aromatic amino acid residues, we characterized 11 novel P450-modified multicyclic RiPPs with different cyclophane linkers through heterologous expression. Further mutation of the key ring-forming residues and combinatorial biosynthesis study revealed the order of bond formation and the specificity of P450s. This study reveals the functional diversity of P450 enzymes involved in the cyclophane-containing RiPPs and indicates that P450 enzymes are promising tools for rapidly obtaining structurally diverse cyclic peptide derivatives.


Asunto(s)
Productos Biológicos , Ciclofanos , Péptidos/química , Péptidos Cíclicos/química , Biología Computacional/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Procesamiento Proteico-Postraduccional , Productos Biológicos/química
2.
Angew Chem Int Ed Engl ; 63(27): e202402800, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411404

RESUMEN

π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.

3.
Angew Chem Int Ed Engl ; 63(17): e202318451, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38416063

RESUMEN

π-π interactions are among the most important intermolecular interactions in supramolecular systems. Here we determine experimentally a universal parameter for their strength that is simply based on the size of the interacting contact surfaces. Toward this goal we designed a new cyclophane based on terrylene bisimide (TBI) π-walls connected by para-xylylene spacer units. With its extended π-surface this cyclophane proved to be an excellent and universal host for the complexation of π-conjugated guests, including small and large polycyclic aromatic hydrocarbons (PAHs) as well as dye molecules. The observed binding constants range up to 108 M-1 and show a linear dependence on the 2D area size of the guest molecules. This correlation can be used for the prediction of binding constants and for the design of new host-guest systems based on the herewith derived universal Gibbs interaction energy parameter of 0.31 kJ/molÅ2 in chloroform.

4.
Angew Chem Int Ed Engl ; 63(10): e202318625, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38231132

RESUMEN

An efficient catalytic asymmetric electrophilic sulfenylation reaction for the synthesis of planar-chiral sulfur-containing cyclophanes has been developed for the first time. This was achieved by using a new Lewis base catalyst and a new ortho-trifluoromethyl-substituted sulfenylating reagent. Using the substrates with low rotational energy barrier, the transformation proceeded through a dynamic kinetic resolution, and the high rotational energy barrier of the substrates allowed the reaction to undergo a kinetic resolution process. Meanwhile, this transformation was compatible with a desymmetrization process when the symmetric substrates were used. Various planar-chiral sulfur-containing cyclophanes were readily obtained in moderate to excellent yields with moderate to excellent enantioselectivities (up to 97 % yield and 95 % ee). This approach was used to synthesize pharmaceutically relevant planar-chiral sulfur-containing molecules. Density functional theory calculations showed that π-π interactions between the sulfenyl group and the aromatic ring in the substrate play a crucial role in enantioinduction in this sulfenylation reaction.

5.
Chemistry ; 29(68): e202302404, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37682562

RESUMEN

A large, strained (SE=44.2 kcal/mol) and conformationally flexible mixed cyclophane of pyridine and teropyrene was synthesized using two intramolecular Wurtz coupling reactions and an unprecedented Scholl reaction between the unreactive 2 positions of the pyrene systems in a triply bridged pyrenophane. Protonation of the pyridine unit results in a greatly enhanced preference for nesting in the cavity of the highly bent teropyrene system (θcalc =162.6°) and emergence of a charge transfer absorption band (λmax =592 nm) due to a long range (5.0-5.5 Å), through-space intramolecular transition between the teropyrene and pyridinium units, which does not exist in the neutral cyclophane.

6.
Chemistry ; 29(20): e202300268, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786211

RESUMEN

Herein we present a systematic study of the influence of different alkyl chains in malonyl ester fullerene adducts with [10]cycloparaphenylene ([10]CPP]) and a tert-butyl (tBu) ester-substituted [10]CPP analogue. The association constants between the nanoring hosts and the fullerene guests were determined by fluorescence quenching experiments. The trends in association were rationalized by an interplay of repulsion arising from an extended volume and London dispersion as an attractive counterpart.

7.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677737

RESUMEN

In this study, 28-membered macrocyclic 1,5(1,5)-di(1,5-diaza-3,7-diphosphacyclooctana)-2,4,6,8(1,4)-tetrabenzenacyclooctaphane were synthesized by condensation of pyridinephosphine, paraformaldehyde, and primary diamines (bis(4-aminophenyl)methane or -sulfide. The first representatives of binuclear copper(I) complexes of P,N-containing cyclophanes with two 1,5-diaza-3,7-diphosphacyclooctane rings incorporated into a macrocyclic core and intracavity location of unusual, developed angle Cu2I moiety were obtained. The structure of one complex was established by X-ray diffraction analysis. The complexation led to a slight distortion of the cyclophane conformations.

8.
Angew Chem Int Ed Engl ; 62(17): e202301267, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36802335

RESUMEN

Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000-1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host-guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host-guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host-guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.


Asunto(s)
Hipertermia Inducida , Terapia Fototérmica , Fototerapia
9.
Angew Chem Int Ed Engl ; 62(51): e202315603, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37919238

RESUMEN

Planar-chiral cyclophanes have received increasing attention for drug discovery and catalyst design. However, the catalytically asymmetric synthesis of planar-chiral cyclophanes has been a longstanding challenge. We describe the first Pd(II)-catalyzed enantioselective C-H olefination of prochiral cyclophanes. The low rotational barrier of less hindered benzene ring in the substrates allows the reaction to proceed through a dynamic kinetic resolution. This approach exhibits broad substrate scope, providing the planar-chiral cyclophanes in high yields (up to 99 %) with excellent enantioselectivities (up to >99 % ee). The ansa chain length scope studies reveal that the chirality of the cyclophanes arises from the bond rotation constraint of the benzene ring around the macrocycle plane, rather than the C-N axis. The C-H activation approach is also applicable to the late-stage modification of bioactive molecules and pharmaceuticals.

10.
Chemistry ; 28(11): e202104161, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-34918840

RESUMEN

Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira-Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π-π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105  M-1 cm-1 , fluorescence quantum yields up to ΦPL =0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10-3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.

11.
Chemistry ; 28(69): e202202577, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36094023

RESUMEN

The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high-performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X-ray analyses, we discovered that UV-irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C-C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox.


Asunto(s)
Ésteres , Hidrógeno
12.
Angew Chem Int Ed Engl ; 61(33): e202205516, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35603757

RESUMEN

We present a facile synthetic route toward a novel series of imidazolinyl-[2.2]paracyclophanol (UCD-Imphanol) ligands possessing central and planar chirality. Both sets of diastereomeric ligands were successfully purified by column chromatography. The preliminary application of this family of ligands showed excellent activities in the asymmetric Zn-catalyzed azomethine ylide cycloaddition. Enantioenriched pyrrolidines, in a substrate scope of 20 examples, were accessed in high levels of endo/exo ratios (up to >99/1) and enantioselectivities (up to >99 % ee) with excellent yields (up to 99 %) by using (S,S,SP )-UCD-Imphanol/(S,S,RP )-UCD-Imphanol, respectively.

13.
Angew Chem Int Ed Engl ; 61(16): e202116585, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148448

RESUMEN

The first example of a cyclophane bearing a nitrogen-containing buckybowl was synthesized via sequential 1,3-dipolar cycloaddition and palladium-catalyzed intramolecular cyclization. The key to the successful synthesis is the strain-induced 1,3-dipolar cycloaddition of a polycyclic aromatic azomethine ylide to the K-region of [7](2,7)pyrenophane. The resulting π-extended azacorannulenophane exhibits intriguing structural and physical properties, including unique variation of bowl depth, extraordinarily high-field chemical shifts in its 1 H NMR spectrum, a decreased HOMO-LUMO gap, and a red shift in the absorption/emission spectrum, when compared to those of the parent azacorannulene. These characteristics are derived from both the π-extension to the polycyclic aromatic system in the cyclophane structure and the increased curvature enforced by the seven-carbon aliphatic chain.

14.
Angew Chem Int Ed Engl ; 61(13): e202113504, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34717037

RESUMEN

Planar chirality is one of the most fascinating expressions of chirality, which is exploited by nature to lock three-dimensional chiral conformations and, more recently, by chemists to create new chiral reagents, catalysts, and functional organic materials. Nevertheless, the shortage of procedures able to induce and secure asymmetry during the generation of these unique chiral entities has dissuaded chemists from exploiting their structural properties. This Minireview intends to illustrate the limited but remarkable catalytic methods that have been reported for the production of planar chirality in strained molecules and serve as a source of inspiration for the development of new unconventional procedures, which are expected to appear in the near future.


Asunto(s)
Estereoisomerismo , Catálisis , Conformación Molecular
15.
Angew Chem Int Ed Engl ; 61(42): e202209225, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35950260

RESUMEN

Mechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher. In solution, the blue monomer emission of the luminophore is largely quenched and a faint reddish-orange emission originating from a charge-transfer (CT) complex is observed. A polyurethane elastomer containing the mechanophore displays orange emission in the absence of force, which is dominated by the CT-emission. Mechanical deformation causes a decrease of the CT-emission and an increase of blue monomer emission, due to the spatial separation between the luminophore and quencher. The ratio of the two emission intensities correlates with the applied stress.

16.
Angew Chem Int Ed Engl ; 61(31): e202206706, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35638322

RESUMEN

Multichromophoric macrocycles and cyclophanes are important supramolecular architectures for the elucidation of interchromophoric interactions originating from precise spatial organization. Herein, by combining an axially chiral binaphthol bisimide (BBI) and a bay-substituted conformationally labile twisted perylene bisimide (PBI) within a cyclophane of well-defined geometry, we report a chiral PBI hetero-cyclophane (BBI-PBI) that shows intramolecular energy and solvent-regulated chirality transfer from the BBI to the PBI subunit. Excellent spectral overlap and spatial arrangement of BBI and PBI lead to efficient excitation energy transfer and subsequent PBI emission with high quantum yield (80-98 %) in various solvents. In contrast, chirality transfer is strongly dependent on the respective solvent as revealed by circular dichroism (CD) spectroscopy. The combination of energy and chirality transfer affords a bright red circularly polarized luminescence (CPL) from the PBI chromophore by excitation of BBI.

17.
Angew Chem Int Ed Engl ; 61(20): e202202491, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35254712

RESUMEN

Perylene diimides (PDIs), a well-studied class of organic dyes, have a strong tendency to self-aggregate in water, thus greatly restricting their phototheranostic applications. Herein, we report a water-soluble PDI cyclophane "Gemini Box" (GBox-14+ ), consisting of a central PDI chromophore enclosed by double-sided cationic molecular straps. Owing to the effective spatial isolation, the chromophore self-aggregation can be completely eliminated, even in a concentrated aqueous solution up to 2 mM. To our knowledge, GBox-14+ represents an interesting example of a fluorescent PDI cyclophane in water, capable of being employed for lysosome-targetable live-cell imaging. More importantly, the highly concentrated aqueous solution of PDI radical anion can be significantly stabilized by GBox-14+ to exhibit an excellent near-infrared photothermal effect, which was further exploited for efficient and selective antibacterial applications. This work provides a new access to water-soluble non-aggregated organic dyes and promotes their potential biomedical applications.


Asunto(s)
Perileno , Cationes , Colorantes , Agua
18.
Chemistry ; 27(63): 15737-15750, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34459521

RESUMEN

Cationic cyclophanes are widely used in a variety of applications in supramolecular chemistry and materials science. In this work the authors systematically study the integration of electron-rich diboron units with BII atoms into polycationic cyclophanes with viologen-like electron-acceptor units. They also report a first hexacationic cage-compound in which three diboron units connect two tris(4-pyridyl)triazine acceptor units. Moreover, di- and tetracationic open-structure compounds, in which one diboron unit connects two bispyridyl groups, were synthesized and the properties compared to those of the corresponding closed structures (cyclophanes). The combination of diboron electron-donor units and bi- or oligopyridyl electron-acceptor units leads to intriguing optical and redox properties.

19.
Chemistry ; 27(1): 390-400, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32960997

RESUMEN

A gram-scale synthesis of a series of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n=7-9) has been accomplished as well as the first synthesis of the next higher homologue 1,1,10,10-tetramethyl[10](2,11)teropyrenophane. The scale-up of the original small-scale synthesis required the development of several heavily modified synthetic methods, including a chlorination/Friedel-Crafts alkylation protocol and an iodination/Wurtz coupling protocol, which were performed on 25-30 g and 30-60 g scales, respectively. Two separate sets of conditions for the key teropyrene-forming cyclodehydrogenation reaction at the end of the synthetic pathway were developed, an acid-promoted one for the two less strained congeners and an acid-free method for the two more strained homologues.

20.
Chemistry ; 27(5): 1648-1654, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33258147

RESUMEN

A simple approach to the synthesis of heterocyclophane consisting of two 4,4'-bithiazoles has been developed in mild conditions. The heterocyclophane with two short chains was conveniently prepared by Hantzsch thiazoles synthesis using the reaction of 3-tert-butoxycarbonyl-3-azapentanethiocarboxamide with 1,4-dibromobutane-2,3-dione in methanol under reflux for only 15 min. Amino groups at the linkers of this heterocyclophane can be functionalized to give acylated and carbamate derivatives. Their properties as protein kinase inhibitors were investigated, and one of the heterocyclophanes exhibited specific anti-activity for c-mesenchymal epithelial transition factor (IC50 =603 nm), among seven types of protein kinases investigated. The computational site identification by ligand competitive saturation method was used to determine why the one heterocyclophane exhibited strong anti-activity for c-mesenchymal epithelial transition factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA