Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 991-1014, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29596002

RESUMEN

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.


Asunto(s)
Bacterias/metabolismo , Pared Celular/metabolismo , Peptidoglicano/biosíntesis , Aminoácidos/química , Bacterias/ultraestructura , Pared Celular/ultraestructura , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica , Microscopía Electrónica , Microscopía Fluorescente
2.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086090

RESUMEN

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Asunto(s)
Vibrio cholerae/citología , Vibrio cholerae/patogenicidad , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Locomoción , Ratones , Peptidoglicano/metabolismo , Periplasma/metabolismo , Alineación de Secuencia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulencia
3.
J Bacteriol ; 206(3): e0033323, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38411059

RESUMEN

Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE: D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.


Asunto(s)
Alanina Racemasa , Ácido Glutámico , Ácido Glutámico/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Racemasas y Epimerasas/metabolismo , Cicloserina , Peptidoglicano/metabolismo , Aminoácidos/metabolismo , Alanina Racemasa/metabolismo
4.
Chembiochem ; 25(8): e202400036, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38385659

RESUMEN

Enantiomerically pure D-amino acids hold significant potential as precursors for synthesizing various fine chemicals, including peptide-based drugs and other pharmaceuticals. This study focuses on establishing an enzymatic cascade system capable of converting various L-amino acids into their D-isomers. The system integrates four enzymes: ancestral L-amino acid oxidase (AncLAAO-N4), D-amino acid dehydrogenase (DAADH), D-glucose dehydrogenase (GDH), and catalase. AncLAAO-N4 initiates the process by converting L-amino acids to corresponding keto acids, which are then stereo-selectively aminated to D-amino acids by DAADH using NADPH and NH4Cl. Concurrently, any generated H2O2 is decomposed into O2 and H2O by catalase, while GDH regenerates NADPH from D-glucose. Optimization of reaction conditions and substrate concentrations enabled the successful synthesis of five D-amino acids, including a D-Phe derivative, three D-Trp derivatives, and D-phenylglycine, all with high enantiopurity (>99 % ee) at a preparative scale (>100 mg). This system demonstrates a versatile approach for producing a diverse array of D-amino acids.


Asunto(s)
Aminoácidos , L-Aminoácido Oxidasa , Aminoácidos/química , Catalasa , NADP , Peróxido de Hidrógeno , Glucosa 1-Deshidrogenasa
5.
Appl Environ Microbiol ; : e0129824, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235243

RESUMEN

The symbiosis between Vibrio fischeri and the Hawaiian bobtail squid, Euprymna scolopes, is a tractable and well-studied model of bacteria-animal mutualism. Here, we developed a method to transiently colonize E. scolopes using D-alanine (D-ala) auxotrophy of the symbiont, controlling the persistence of viable infection by supplying or withholding D-ala. We generated alanine racemase (alr) mutants of V. fischeri that lack avenues for mutational suppression of auxotrophy or reversion to prototrophy. Surprisingly, an ∆alr mutant did not require D-ala to grow in a minimal medium, a phenomenon requiring metC, which encodes cystathionine ß-lyase. Likewise, overexpression of metC suppressed D-ala auxotrophy in a rich medium. To block potential mechanisms of suppression, we combined the ∆alr mutation with deletions of metC and/or bsrF, which encodes a broad-spectrum racemase and investigated the suppression rates of four D-ala auxotrophic strains. We then focused on ∆alr ∆bsrF mutant MC13, which has a suppression rate of <10-9. When D-ala was removed from a growing culture of MC13, cells rounded and lysed within 40 minutes. Transient colonization of E. scolopes was achieved by inoculating squid in seawater containing MC13 and D-ala, and then transferring the squid into water lacking D-ala, which resulted in loss of viable symbionts within hours. Interestingly, the symbionts within crypt 3 persisted longer than those of crypt 1, suggesting a difference in bacterial growth rate in distinct crypt environments. Our study highlights a new approach for inducing transient colonization and provides insight into the biogeography of the E. scolopes light organ.IMPORTANCEThe importance of this study is multi-faceted, providing a valuable methodological tool and insight into the biology of the symbiosis between Vibrio fischeri and Euprymna scolopes. First, the study sheds light on the critical role of D-ala for bacterial growth, and the underpinnings of D-ala synthesis. Our observations that metC obviates the need for D-ala supplementation of an alr mutant in minimal medium and that MetC-dependent growth correlates with D-ala in peptidoglycan, corroborate and extend previous findings in Escherichia coli regarding a role of MetC in D-ala production. Second, our isolation of robust D-ala auxotrophs led us to a novel method for studying the squid-Vibrio symbiosis, allowing for transient colonization without the use of antibiotics, and revealed intriguing differences in symbiont growth parameters in distinct light organ crypts. This work and the methodology developed will contribute to our understanding of the persistence and dynamics of V. fischeri within its host.

6.
Appl Environ Microbiol ; 90(2): e0196223, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38289129

RESUMEN

Pseudomonas putida is a metabolically robust soil bacterium that employs a diverse set of pathways to utilize a wide range of nutrients. The versatility of this microorganism contributes to both its environmental ubiquity and its rising popularity as a bioengineering chassis. In P. putida, the newly named dbu locus encodes a transcriptional regulator (DbuR), D-amino acid oxidase (DbuA), Rid2 protein (DbuB), and a putative transporter (DbuC). Current annotation implicates this locus in the utilization of D-arginine. However, data obtained in this study showed that genes in the dbu locus are not required for D-arginine utilization, but, rather, this locus is involved in the catabolism of multiple D-branched-chain amino acids (D-BCAA). The oxidase DbuA was required for catabolism of each D-BCAA and D-phenylalanine, while the requirements for DbuC and DbuB were less stringent. The functional characterization of the dbu locus contributes to our understanding of the metabolic network of P. putida and proposes divergence in function between proteins annotated as D-arginine oxidases across the Pseudomonas genus.IMPORTANCEPseudomonas putida is a non-pathogenic bacterium that is broadly utilized as a host for bioengineering and bioremediation efforts. The popularity of P. putida as a chassis for such efforts is attributable to its physiological versatility and ability to metabolize a wide variety of compounds. Pathways for L-amino acid metabolism in this microbe have been rather well studied, primarily because of their relevance to efforts in foundational physiology research, as well as the commercial production of economically pertinent compounds. However, comparatively little is known about the metabolism of D-amino acids despite evidence showing the ability of P. putida to metabolize these enantiomers. In this work, we characterize the D-BCAA catabolic pathway of P. putida and its integration with the essential L-BCAA biosynthetic pathway. This work expands our understanding of the metabolic network of Pseudomonas putida, which has potential applications in efforts to model and engineer the metabolic network of this organism.


Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Oxidorreductasas/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo
7.
Amino Acids ; 56(1): 38, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844708

RESUMEN

Biomarkers that accurately reflect renal function are essential in management of chronic kidney diseases (CKD). However, in children, age/physique and medication often alter established renal biomarkers. We studied whether amino acid enantiomers in body fluids correlate with renal function and whether they are influenced by physique or steroid medication during development. We conducted a prospective study of children 2 to 18 years old with and without CKD. We analyzed associations of serine/asparagine enantiomers in body fluids with major biochemical parameters as well as physique. To study consequences of kidney dysfunction and steroids on serine/asparagine enantiomers, we generated juvenile mice with uninephrectomy, ischemic reperfusion injury, or dexamethasone treatment. We obtained samples from 27 children, of which 12 had CKD due to congenital (n = 7) and perinatal (n = 5) causes. Plasma D-asparagine and the D/L-serine ratio had robust, positive linear associations with serum creatinine and cystatin C, and detected CKD with high sensitivity and specificity, uninfluenced by body size or biochemical parameters. In the animal study, kidney dysfunction increased plasma D-asparagine and the D/L-serine ratio, but dexamethasone treatment did not. Thus, plasma D-asparagine and the D/L-serine ratio can be useful markers for renal function in children.


Asunto(s)
Asparagina , Biomarcadores , Insuficiencia Renal Crónica , Serina , Niño , Animales , Humanos , Asparagina/sangre , Asparagina/metabolismo , Insuficiencia Renal Crónica/sangre , Preescolar , Serina/sangre , Ratones , Masculino , Femenino , Adolescente , Biomarcadores/sangre , Estudios Prospectivos , Dexametasona , Estereoisomerismo , Creatinina/sangre , Riñón/metabolismo
8.
Chem Rec ; : e202400013, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318079

RESUMEN

Over three decades ago, two independent groups of investigators identified free D-aspartic and later D-serine in specific brain nuclei and endocrine glands. This finding revealed a novel, non-proteinogenic role of these molecules. Moreover, the finding that aged proteins from the human eye crystallin, teeth, bone, blood vessels or the brain incorporate D-aspartic acids to specific primary protein sequences fostered the hypothesis that aging might be related to D-amino acid isomerization of body proteins. The experimental confirmation that schizophrenia and neurodegenerative diseases modify plasma free D-amino acids or tissue levelsnurtured the opportunity of using D-amino acids as therapeutic agents for several disease treatments, a strategy that prompted the successful current application of D-amino acids to human medicine.

9.
J Pept Sci ; 30(5): e3559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38111175

RESUMEN

This work describes the self-assembly behavior of heterochiral, aliphatic dipeptides, l-Leu-d-Xaa (Xaa = Ala, Val, Ile, Leu), in green solvents such as acetonitrile (MeCN) and buffered water at neutral pH. Interestingly, water plays a structuring role because at 1% v/v, it enables dipeptide self-assembly in MeCN to yield organogels, which then undergo transition towards crystals. Other organic solvents and oils were tested for gelation, and metastable gels were formed in tetrahydrofuran, although at high peptide concentration (80 mM). Single-crystal X-ray diffraction revealed the dipeptides' supramolecular packing modes in amphipathic layers, as opposed to water channels reported for the homochiral Leu-Leu, or hydrophobic columns reported for homochiral Leu-Val and Leu-Ile.


Asunto(s)
Dipéptidos , Péptidos , Dipéptidos/química , Péptidos/química , Cristalografía por Rayos X , Solventes , Agua
10.
Clin Exp Nephrol ; 28(5): 440-446, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340247

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) reportedly show dysbiosis, which is the imbalance of gut microbiome. Dysbiosis increases the uremic toxin level in the intestine, and uremic toxins transfer into the blood, causing CKD progression. Sake lees, a traditional Japanese fermented food, may help reduce uremic toxins by altering the gut microbiome. Additionally, D-alanine, which is present in sake lees, may have a renoprotective effect. The present pilot study aims to evaluate the effect of adding sake lees to the standard CKD dietary therapy in reducing blood uremic toxins. METHODS: This pilot study is a single-center, open-label, randomized controlled trial. Twenty-four patients with CKD will be enrolled and allocated 1:1 to the intervention and control groups. The intervention group will receive standard CKD dietary therapy with an additional intake of 50 g of sake lees per day for 8 weeks, whereas the control group will only receive standard CKD dietary therapy. The primary endpoint is the change in serum indoxyl sulfate after 8 weeks. The secondary endpoint is the plasma D-alanine and fecal microbiome changes. CONCLUSION: This pilot study provides insight into the development of a new diet focused on gut microbiome and D-amino acids in patients with CKD. CLINICAL TRIAL REGISTRATION: This protocol was approved by the Clinical Trial Review Board of Kanazawa University Hospital on October 27, 2022 (2022-001 [6139]) and available to the public on the website of the Japan Registry of Clinical Trials on November 22, 2022 (jRCT1040220095).


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Tóxinas Urémicas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Disbiosis , Alimentos Fermentados , Proyectos Piloto , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia Renal Crónica/dietoterapia , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Tóxinas Urémicas/sangre
11.
Bioessays ; 44(7): e2200002, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35484375

RESUMEN

D-amino acids are being recognized as functionally important molecules in mammals. We recently identified endogenous D-cysteine in mammalian brain. D-cysteine is present in neonatal brain in substantial amounts (mM) and decreases with postnatal development. D-cysteine binds to MARCKS and a host of proteins implicated in cell division and neurodevelopmental disorders. D-cysteine decreases phosphorylation of MARCKS in neural progenitor cells (NPCs) affecting its translocation. D-cysteine controls NPC proliferation by inhibiting AKT signaling. Exogenous D-cysteine inhibits AKT phosphorylation at Thr 308 and Ser 473 in NPCs. D-cysteine treatment of NPCs led to 50% reduction in phosphorylation of Foxo1 at Ser 256 and Foxo3a at Ser 253. We hypothesize that in the developing brain endogenous D-cysteine is as a physiologic regulator of NPC proliferation by inhibiting AKT signaling mediated by Foxo1 and Foxo3a. Endogenous D-cysteine may regulate mammalian neurodevelopment with roles in schizophrenia and Alzheimer's disease (AD).


Asunto(s)
Cisteína , Péptidos y Proteínas de Señalización Intracelular , Animales , Proliferación Celular , Cisteína/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estereoisomerismo
12.
Magn Reson Chem ; 62(3): 125-144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37884439

RESUMEN

Solid state NMR is widely used to study the orientation and other structural features of proteins and peptides in lipid bilayers. Using data obtained by PISEMA (Polarization Inversion Spin Exchange at Magic Angle) experiments, periodic spectral patterns arise from well-aligned α-helical molecules. Significant problems in the interpretation of PISEMA spectra may arise for systems that do not form perfectly defined secondary structures, like α-helices, or the signal pattern is disturbed by molecular motion. Here, we present a new method that combines molecular dynamics simulation with tensorial orientational constraints (MDOC) and chemical shift tensor calculations for the simulation and interpretation of PISEMA-like spectra. The calculations include the spectra arising from non α-helical molecules and molecules with non-uniform intrinsic mobility. In a first step, dipolar or quadrupolar interaction tensors drive molecular rotations and reorientations to obtain the proper mean values as observed in corresponding NMR experiments. In a second step, the coordinate snapshots of the MDOC simulations are geometry optimized with the isotropic 15 N chemical shifts as constraints using Bond Polarization Theory (BPT) to provide reliable 15 N CS tensor data. The averaged dipolar 1 H-15 N couplings and the δzz tensor components can then be combined to simulate PISEMA patterns. We apply this method to the ß-helical peptide gramicidin A (gA) and demonstrate that this method enables the assignment of most PISEMA resonances. In addition, MDOC simulations provide local order parameters for the calculated sites. These local order parameters reveal large differences in backbone mobility between L- and D-amino acids of gA.

13.
Mikrochim Acta ; 191(11): 653, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-39375224

RESUMEN

A Raman-active boronate modified surface-enhanced Raman scattering (SERS) microporous array chip based on the enzymatic reaction was constructed for reliable, sensitive, and quantitative monitoring of D-Proline (D-Pro) and D-Alanine (D-Ala) in saliva. Initially, 3-mercaptophenylboronic acid (3-MPBA) was bonded to Au-coated Si nanocrown arrays (Au/SiNCA) via Au-S bonding. Following this, H2O2 obtained from D-amino acid oxidase (DAAO)-specific catalyzed D-amino acids (D-AAs) further reduced 3-MPBA to 3-hydroxythiophenol (3-HTP) with a new Raman peak at 882 cm-1. Meanwhile, the original characteristic peak at 998 cm-1 remained unchanged. Therefore, the I882/I998 ratio increased with increasing content of D-AAs in the sample to be tested, allowing D-AAs to be quantitatively detected. The Au/SiNCA with large-area periodic crown structure prepared provided numerous, uniform "hot spots," and the microporous array chip with 16 detection units was employed as the platform for SERS analysis, realizing high-throughput, high sensitivity, high specificity and high-reliability quantitative detection of D-AAs (D-Pro and D-Ala). The limits of detection (LOD) were down to 10.1 µM and 13.7 µM throughout the linear range of 20-500 µM. The good results of the saliva detection suggested that this SERS sensor could rapidly differentiate between early-stage gastric cancer patients and healthy individuals.


Asunto(s)
Oro , Saliva , Espectrometría Raman , Saliva/química , Humanos , Espectrometría Raman/métodos , Oro/química , Porosidad , Límite de Detección , D-Aminoácido Oxidasa , Prolina/química , Prolina/análisis , Estereoisomerismo , Alanina/química , Alanina/análisis , Alanina/análogos & derivados , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Ácidos Borónicos/química , Silicio/química , Aminoácidos/análisis , Aminoácidos/química , Nanopartículas del Metal/química , Ensayos Analíticos de Alto Rendimiento/métodos
14.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673985

RESUMEN

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Humanos , Anuros , Piel/microbiología , Piel/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química
15.
Biochem Biophys Res Commun ; 641: 186-191, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36535077

RESUMEN

Activation of N-methyl-d-aspartate receptors (NMDARs) requires binding of a co-agonist in addition to l-glutamate. d-serine binds to the co-agonist site on GluN1 subunits of NMDARs and modulates glutamatergic neurotransmission. While loss of GluN1 subunits in mice results in neonatal death due to respiratory failure, animals that lack a d-serine synthetic enzyme, serine racemase (SR), show grossly normal growth. However, SR-independent origins of d-serine in the brain remain unclarified. In the present study, we investigated the origin of brain d-serine in mice. Loss of SR significantly reduced d-serine in the cerebral cortex, but a portion of d-serine remained in both neonates and adults. Although d-serine was also produced by intestinal bacteria, germ-free experiments did not influence d-serine levels in the cerebral cortex. In addition, treatment of SR-knockout mice with antibiotics showed a significant reduction of intestinal d-serine, but no reduction in the brain. On the other hand, restriction of dietary intake reduced systemic circulation of d-serine and resulted in a slight decrease of d-serine in the cerebral cortex, but did not account for brain d-serine found in the SR-knockout mice. Therefore, our findings show that endogenous d-serine of non-SR origin exists in the brain. Such previously unrecognized, SR-independent, endogenous d-serine may contribute baseline activity of NMDARs, especially in developing brain, which has minimal SR expression.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Serina , Ratones , Animales , Serina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Ratones Noqueados , Mamíferos/metabolismo
16.
Amino Acids ; 55(4): 541-544, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36717395

RESUMEN

Approximately 12% of histone H2B molecules in mammalian brain contain a modification wherein Asp25 is present as the D-enantiomer, and is mostly linked to Gly26 via the side-chain carboxyl. Here we (1) demonstrate the high specificity of a polyclonal antibody to this modification, and (2) use this Ab to demonstrate that this modification is enriched in brain relative to liver, thymus, and HeLa cells.


Asunto(s)
Anticuerpos , Histonas , Animales , Humanos , Histonas/genética , Histonas/metabolismo , Células HeLa , Mamíferos/metabolismo , Encéfalo/metabolismo , Cromatina
17.
Amino Acids ; 55(1): 51-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36580144

RESUMEN

D-Amino acids are regulatory molecules that affect biological processes. Therefore, being able to accurately detect and quantify these compounds is important for understanding their impact on nutrition and health. There is a paucity of information regarding D-amino acids in human milk. We developed a fast method for simultaneous analysis of amino acid enantiomers in human milk using liquid chromatography with tandem mass spectrometry. The method enables the separation of 41 amino acids without chemical derivatization. Our results revealed that human milk from mothers of preterm infants contains concentrations of D-amino acids that range from 0.5 to 45% that of their L-counterparts and that levels of most D-amino acids decrease as the milk production matures. Moreover, we found that Holder pasteurization of milk does not cause racemization of L-amino acids. To our knowledge, this is the first study to describe percentages of D-amino acid levels in human milk; changes in D-amino acid concentration as the milk matures; and the effect of Holder pasteurization on D- and L-amino acid concentrations in human milk.


Asunto(s)
Recien Nacido Prematuro , Leche Humana , Humanos , Recién Nacido , Lactante , Femenino , Embarazo , Leche Humana/química , Aminoácidos/análisis , Calostro/química , Cromatografía Liquida , Pasteurización
18.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688758

RESUMEN

D-amino acids, the important components of the bacterial cell walls, are valuable molecular and genetic markers of bacterial-derived organic material in the environment. D-serine, a racemization product of L-serine is one such amino acid present in various prokaryotes and eukaryotes. It is a well-recognized regulator of various activities in the human nervous system. In plants, it has a role in the nitrogen cycle regulation and pollen tube growth. Serine enantiomers are present in different concentrations and few bacterial strains are reported to contribute to D-serine in the environment. During the present study, soil samples from different places in North India were collected and processed to isolate and screen the bacteria on M9 minimal media (Himedia) for D-serine synthesis. Thin-layer chromatography (TLC Silica gel 60 F 254 (20 × 20 cm, Merck, Darmstadt, Germany) and Mass spectroscopic analysis (Bruker MICROTOF II spectrometer) studies, etc were performed. D-serine-producing isolates were characterized as per standard procedures. Bacterial isolate A1C1 with maximum D-serine (0.919 ± 0.02 nM) synthesis under optimal growth conditions (37°C ± 0.5, 150 ± 0.5 RPM, and 7 ± 0.5 pH) was identified as Bacillus tequilensis based on 16sRNA sequencing. The isolate could be a valuable serine racemization tool for various industrial and environmental applications.


Asunto(s)
Bacillus , Serina , Humanos , Serina/análisis , Serina/química , Serina/metabolismo , Aminoácidos/metabolismo , Bacillus/metabolismo , Cromatografía en Capa Delgada
19.
Proc Natl Acad Sci U S A ; 117(36): 22484-22493, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848072

RESUMEN

The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to d-serine (d-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to d-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of d-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two d-Ser transporters and/or activation of a previously nonfunctional d-Ser deaminase. While the implication of cytoplasmic transport in d-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to d-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for d-Ser uptake that is central to the niche restriction of EHEC.


Asunto(s)
Escherichia coli Enterohemorrágica , Genoma Bacteriano , Serina/farmacología , Adaptación Biológica/genética , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Técnicas de Silenciamiento del Gen , Genoma Bacteriano/efectos de los fármacos , Genoma Bacteriano/genética , Células HeLa , Humanos , Mutación/genética , Sistemas de Secreción Tipo III/genética
20.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373388

RESUMEN

d-amino acids have recently been found to be present in the extracellular milieu at millimolar levels and are therefore assumed to play a physiological function. However, the pathway (or potential pathways) by which these d-amino acids are secreted remains unknown. Recently, Escherichia coli has been found to possess one or more energy-dependent d-alanine export systems. To gain insight into these systems, we developed a novel screening system in which cells expressing a putative d-alanine exporter could support the growth of d-alanine auxotrophs in the presence of l-alanyl-l-alanine. In the initial screening, five d-alanine exporter candidates, AlaE, YmcD, YciC, YraM, and YidH, were identified. Transport assays of radiolabeled d-alanine in cells expressing these candidates indicated that YciC and AlaE resulted in lower intracellular levels of d-alanine. Further detailed transport assays of AlaE in intact cells showed that it exports d-alanine in an expression-dependent manner. In addition, the growth constraints on cells in the presence of 90 mM d-alanine were mitigated by the overexpression of AlaE, implying that AlaE could export free d-alanine in addition to l-alanine under conditions in which intracellular d/l-alanine levels are raised. This study also shows, for the first time, that YciC could function as a d-alanine exporter in intact cells.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Escherichia coli , Escherichia coli , Alanina/metabolismo , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA