Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(34): e2200759119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969777

RESUMEN

Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.


Asunto(s)
Mimetismo Biológico , Saltamontes , Animales , Femenino , Saltamontes/genética , Masculino , Feromonas/metabolismo , Pigmentación , Densidad de Población , Caracteres Sexuales
2.
Naturwissenschaften ; 111(2): 12, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411714

RESUMEN

Interspecific variation in sex-specific contributions to prenatal parental care, including avian nest building, is becoming increasingly better understood as we amass more information on more species. We examined whether sex-specific nest building contributions covary with the colouration of parents and their eggs in 521 species of Western Palearctic birds. Having colourful plumage and laying colourful eggs are costly because of the deposition of pigments in feathers and eggs and/or forming costly nanostructural substrates in feathers, and so it might be expected that those costs covary with the costs of nest building at the level of individuals and/or across species to produce of a suite of codivergent traits. Using a phylogenetically informed approach, we tested the hypothesis that species in which females alone invest energy building nests exhibit less sexual plumage dichromatism. However, we found comparative support for the opposite of this prediction. We then tested that species in which females alone build nests lay more colourful, and costlier, eggs because the dual costs of building nests and laying colourful eggs can only be borne by higher quality individuals. As expected, we found that species in which females build nests alone or together with males are more likely to lay colourfully pigmented eggs relative to species in which only males build nests. Finally, stochastic character mapping provided evidence of the repeated evolution of female-only nest building. Interspecific sex differences in plumage colouration therefore covary in a complex manner with female pre- (nest building) and post-copulatory (egg production) investment in reproduction.


Asunto(s)
Aves , Cáscara de Huevo , Animales , Femenino , Masculino , Embarazo , Plumas , Fenotipo
3.
J Fish Biol ; 105(1): 340-357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769734

RESUMEN

Three nominal species of the killifish genus Aplocheilus are reported from the lowlands of Sri Lanka. Two of these, Aplocheilus dayi and Aplocheilus werneri, are considered endemic to the island, whereas Aplocheilus parvus is reported from both Sri Lanka and Peninsular India. Here, based on a collection from 28 locations in Sri Lanka, also including a dataset of Asian Aplocheilus downloaded from GenBank, we present a phylogeny constructed from the mitochondrial cytochrome b (cytb), mitochondrial cytochrome c oxidase subunit 1 (cox1), and nuclear recombination activating protein 1 (rag1), and investigate the interrelationships of the species of Aplocheilus in Sri Lanka. The endemic Sri Lankan aplocheilid clade comprising A. dayi and A. werneri is recovered as the sister group to the clade comprising A. parvus from Sri Lanka and Aplocheilus blockii from Peninsular India. The reciprocal monophyly of A. dayi and A. werneri is not supported in our molecular phylogeny. A. dayi and A. werneri display strong sexual dimorphism, but species-level differences are subtle, explained mostly by pigmentation patterns. Their phenotypes exhibit a parapatric distribution and may represent locally adapted forms of a single species. Alternatively, the present study does not rule out the possibility that A. dayi and A. werneri may represent an incipient species pair or that they have undergone introgression or hybridization in their contact zones. We provide evidence that the Nilwala-Gin region of southwestern Sri Lanka may have acted as a drought refugium for these fishes.


Asunto(s)
Citocromos b , Filogenia , Filogeografía , Animales , Sri Lanka , Citocromos b/genética , Peces Killi/genética , Peces Killi/clasificación , Complejo IV de Transporte de Electrones/genética , Masculino , Femenino , ADN Mitocondrial/genética
4.
J Exp Biol ; 226(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232483

RESUMEN

The wings of the purple spotted swallowtail Graphium weiskei are marked by an unusual bright colour pattern. Spectrophotometry on G. weiskei wings demonstrated the presence of a pigment with an absorption spectrum (peak wavelength λmax=676 nm) similar to that of the bile pigment sarpedobilin in the wings of the congeneric Graphium sarpedon (λmax=672 nm). Sarpedobilin alone causes cyan-blue wing areas, but the green-coloured areas of G. sarpedon wings result from subtractive colour mixing with the carotenoid lutein. Reflectance spectra of the blue-coloured areas of G. weiskei wings indicate that sarpedobilin is mixed with the short-wavelength-absorbing papiliochrome II. An enigmatic pigment, tentatively called weiskeipigment (λmax=580 nm), enhances the saturation of the blue colour. Weiskeipigment causes a purple colour in areas where the sarpedobilin concentration is low. The wings of the related papilionid Papilio phorcas contain the bile pigment pharcobilin (λmax=604 nm), as well as another sarpedobilin (λmax=663 nm). The cyan to greenish wings of P. phorcas are due to phorcabilin and sarpedobilin mixed with papiliochrome II. A survey of known subspecies of G. weiskei as well as of congeneric Graphium species of the 'weiskei' group shows various degrees of subtractive colour mixing of bilins and short-wavelength absorbers (carotenoids and/or papiliochromes) in their wings. This study illuminates the underestimated role of bile pigments in butterfly wing colouration.


Asunto(s)
Mariposas Diurnas , Animales , Color , Pigmentación , Espectrofotometría , Pigmentos Biliares , Alas de Animales
5.
Oecologia ; 203(3-4): 383-394, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955714

RESUMEN

Identifying plant sexual dimorphic traits is critical in advancing our knowledge on plant-pollinator interactions. For example, dimorphism in floral colors, or sexual dichromatism, is a crucial mediator of pollinator choice on foraging decisions. We studied Cylindropuntia wolfii, a model system, with diverse flower colors and a functionally dioecious sexual system. However, evidence suggests that sexual reproduction is limited in this species as it has a low seed set especially in naturally pollinated fruits. Thus, it is critical to this native species' conservation to investigate its relationship with pollinators. Our goals were to: (a) investigate the sexual dimorphism including the sexual dichromatism in the flowers of the cactus, and (b) determine whether sexually dimorphic traits affect the pollinator attraction of both the sexes. We measured several quantitative and qualitative traits and compared them between male and female flowers. Then we recorded the pollinator visitation rate in nature for both sexes and tracked pollinator color preference using fluorescent dyes as pollen analogues. Our study showed that male flowers of C. wolfii are bigger and brighter, and they attract more potential pollinators than females, supporting the hypothesis that sexual dimorphism influences pollinator visitation preference. Fluorescence dichromatism, in which female flowers' anthers fluoresce more than male flower anthers suggest this could be female flowers' strategy to compensate for their dark colors and small size. The results from this study showed that C. wolfii exhibits sexual dichromatism and fluorescence dichromatism, which is a novel finding in plant research.


Asunto(s)
Polinización , Caracteres Sexuales , Reproducción , Plantas , Polen , Flores
6.
Oecologia ; 203(3-4): 491-502, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982911

RESUMEN

Integument colouration can influence many aspects of fitness, and is under strong sexual selection. Amphibians often express sexual dichromatism, and ultra-violet (UV) colouration is usually biased toward males as a sexual signal. As an honest signal, colouration is related to several individual traits, but can also be related to environmental factors such as anthropogenic pollutants, to which amphibians are highly sensitive. In this study, we investigated sexual dichromatism and UV reflectance covering a large visual spectrum (wavelength ranging from 300 to 700 nm) on different body areas (throat, ventral and dorsal areas), in a widespread amphibian species, the spiny toad (Bufo spinosus). Then, we tested the impact of chronic exposure to two widespread herbicides (glyphosate's primary metabolite [AMPA] and Nicosulfuron) on their colouration. We found a strong but unexpected sexual dichromatism with females reflecting more in the UV spectrum (throat and ventral area) than males, suggesting these body parts might be critical in intra-specific signalling. Females with higher ventral UV reflectance were in better body condition, suggesting an honest signal role of UV reflectance which could influence male choice. Throat colouration was further differentially influenced by agrochemicals according to sexes. In AMPA-exposed males, throat was more saturated in yellow-orange than in control males, and Nicosulfuron exposure decreased the throat's reflectance hue in females, which can bear consequences on mate attractiveness. Future studies need to investigate the underlying mechanisms that are altered by agrochemical exposure.


Asunto(s)
Bufonidae , Piridinas , Humanos , Animales , Femenino , Masculino , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Compuestos de Sulfonilurea , Pigmentación
7.
J Hered ; 114(6): 637-653, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37498153

RESUMEN

Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.


Asunto(s)
Lagartos , Animales , Femenino , Masculino , Lagartos/genética , Andrógenos/metabolismo , Especificidad de la Especie , Melaninas/metabolismo , Testosterona/metabolismo , Caracteres Sexuales , Expresión Génica
8.
J Therm Biol ; 118: 103754, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000146

RESUMEN

Sunning, or sunbathing, is a behavior observed in diverse birds from at least 50 taxonomic families. While sunning, birds exhibit signs of heat stress, notably panting, indicating a risk of overheating. Given that even modest increases in brain temperature can impair brain function, sunning birds may have mechanisms that selectively cool the brain. Sunning birds could cool the brain using active physiological mechanisms (e.g., an ophthalmic rete or sleeping) or passive adaptations, such as light-colored plumage over the cranium. White-capped noddies are tropical seabirds that sunbathe in direct sunlight on cloudless days. Using infrared thermography on wild birds, we found that the white cap is 20 °C cooler than that of the black back while sunning. A deceased bird showed the same thermal profile, indicating that this difference arises from dichromatic coloration and not underlying physiology. Thus, the white cap may extend the duration of time noddies can sunbathe and keep the brain cool, near core body temperature, while allowing the rest of the body to heat up, perhaps to displace or kill parasites.


Asunto(s)
Charadriiformes , Frío , Humanos , Animales , Temperatura Corporal , Temperatura , Regulación de la Temperatura Corporal/fisiología , Aves/fisiología
9.
Ecol Lett ; 25(4): 958-970, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35106902

RESUMEN

Sex-specific physiology is commonly reported in animals, often indicating lower immune indices and higher oxidative stress in males than in females. Sexual selection is argued to explain these differences, but empirical evidence is limited. Here, we explore sex differences in immunity, oxidative physiology and packed cell volume of wild, adult, breeding birds (97 species, 1997 individuals, 14 230 physiological measurements). We show that higher female immune indices are most common across birds (when bias is present), but oxidative physiology shows no general sex-bias and packed cell volume is generally male-biased. In contrast with predictions based on sexual selection, male-biased sexual size dimorphism is associated with male-biased immune measures. Sexual dichromatism, mating system and parental roles had no effect on sex-specificity in physiology. Importantly, female-biased immunity remained after accounting for sexual selection indices. We conclude that cross-species differences in physiological sex-bias are largely unrelated to sexual selection and alternative explanations should be explored.


Asunto(s)
Caracteres Sexuales , Conducta Sexual Animal , Animales , Aves/fisiología , Femenino , Inmunidad , Masculino , Estrés Oxidativo , Conducta Sexual Animal/fisiología , Selección Sexual
10.
Ecol Lett ; 25(3): 647-660, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199926

RESUMEN

Sex roles describe sex differences in courtship, mate competition, social pair-bonds and parental care. A key challenge is to identify associations among the components and the drivers of sex roles. Here, we investigate sex roles using data from over 1800 bird species. We found extensive variation and lability in proxies of sex roles, indicating remarkably independent evolution among sex role components. Climate and life history showed weak associations with sex roles. However, adult sex ratio is associated with sexual dimorphism, mating system and parental care, suggesting that social environment is central to explaining variation in sex roles among birds. Our results suggest that sex differences in reproductive behaviour are the result of diverse and idiosyncratic responses to selection. Further understanding of sex roles requires studies at the population level to test how local responses to ecology, life histories and mating opportunities drive processes that shape sex role variation among higher taxa.


Asunto(s)
Aves , Rol de Género , Animales , Evolución Biológica , Aves/fisiología , Femenino , Masculino , Filogenia , Caracteres Sexuales , Razón de Masculinidad , Conducta Sexual Animal/fisiología , Medio Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA