Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(46)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39137797

RESUMEN

Pristine and Dy substituted MnFe2O4,MnFe2-xDyxO4(x= 0.00, 0.02, 0.04, 0.06, 0.08 & 0.10) were successfully synthesized by sol-gel method to investigate the dielectric properties of the system. MnFe2O4exhibits a high dielectric permittivity of order 104which is further augmented by 60% through Dy substitution. This is owing to the rise in interfacial polarization resulting from localized states, dipolar polarization arising from the multiple valence states of Fe and Mn ions, atomic polarization due to structural distortion induced by strain, and electronic polarization stemming from the concentration of free charge carriers. The enhancement of induced strain, mixed valence ratio of Fe2+/Fe3+and Mn4+/Mn2+, localized states, and free charge carrier concentration are confirmed from the XRD, XPS, and optical studies, respectively. The dielectric relaxation mechanism of MnFe2-xDyxO4follows a modified Havriliak-Negami relaxation model with conductivity contribution. Complex impedance analyses further validate the contribution of grain-grain boundary mechanisms to the dielectric properties confirmed through Nyquist plots. A comprehensive analysis of conductivity reveals the significant impact of Dy substitution on the electrical conductivity of MnFe2O4. This influence is strongly related to the variations in the concentration of free charge carriers within the MnFe2-xDyxO4system. The understanding of the underlying physics governing the dielectric properties of Dy-substituted MnFe2O4not only enhances the fundamental knowledge of material behavior but also opens new avenues for the design and optimization of advanced electronic and communication devices.

2.
Sensors (Basel) ; 24(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38894299

RESUMEN

This study investigates the dielectric properties of conductive biocomposites (CBs), which are integral to the development of advanced materials for flexible electronics and medical devices. A novel method employing Microwave Reflectometry (MR) is introduced, utilizing a miniaturized Vector Network Analyzer (m-VNA) and a dedicated sensing element (SE), to extract the dielectric properties of CBs. The method is grounded in a minimization principle, aligning the measured S11 reflection scattering parameter with its electromagnetic (EM) simulation, facilitating a refined process for determining the dielectric properties. The experimental setup was meticulously engineered, optimized, and validated using reference dielectric samples (RDSs) with known dielectric properties. The method was then applied to three innovative CBs, resulting in an accurate extrapolation of their dielectric properties. The findings highlight the method's versatility, cost-efficiency, and applicability to ultra-thin and flexible biopolymer films, offering significant potential for advancements in flexible electronics and bio-sensing applications.

3.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610417

RESUMEN

In this work, the performance of the TEROS 12 electromagnetic sensor, which measures volumetric soil water content (θ), bulk soil electrical conductivity (σb), and temperature, is examined for a number of different soils, different θ and different levels of the electrical conductivity of the soil solution (ECW) under laboratory conditions. For the above reason, a prototype device was developed including a low-cost microcontroller and suitable adaptation circuits for the aforementioned sensor. Six characteristic porous media were examined in a θ range from air drying to saturation, while four different solutions of increasing Electrical Conductivity (ECw) from 0.28 dS/m to approximately 10 dS/m were used in four of these porous media. It was found that TEROS 12 apparent dielectric permittivity (εa) readings were lower than that of Topp's permittivity-water content relationship, especially at higher soil water content values in the coarse porous bodies. The differences are observed in sand (S), sandy loam (SL) and loam (L), at this order. The results suggested that the relationship between experimentally measured soil water content (θm) and εa0.5 was strongly linear (0.869 < R2 < 0.989), but the linearity of the relation θm-εa0.5 decreases with the increase in bulk EC (σb) of the soil. The most accurate results were provided by the multipoint calibration method (CAL), as evaluated with the root mean square error (RMSE). Also, it was found that εa degrades substantially at values of σb less than 2.5 dS/m while εa returns to near 80 at higher values. Regarding the relation εa-σb, it seems that it is strongly linear and that its slope depends on the pore water electrical conductivity (σp) and the soil type.

4.
J Sci Food Agric ; 104(7): 3913-3925, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38345161

RESUMEN

BACKGROUND: Food adulteration has long been considered a major problem. It compromises the quality, safety, and nutritional value of food, posing significant risks to public health. Novel techniques are required to control it. RESULTS: A graphene-based T-shaped monopole antenna sensor was tested for its ability to detect adulteration in liquid foods. Mustard oil was the pure reference sample used for product quality analysis. Olive oil and rice bran oil were adulterants added to the pure sample. It was found that the sensor could be immersed easily in the liquid sample and provided precise results. CONCLUSION: The graphene-based T-shaped monopole antenna sensor can be used for the quality assessment of liquid food products and is suitable for real-time monitoring. © 2024 Society of Chemical Industry.


Asunto(s)
Grafito , Aceite de Oliva/análisis , Contaminación de Alimentos/análisis , Aceite de Salvado de Arroz/análisis
5.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37447651

RESUMEN

The irrigation of extensive green roofs with recycled or saline water could contribute to the conservation of valuable drinking water supplies. In such cases, the continuous monitoring of substrate electrical conductivity (ECsw) is of immense importance for the sustainable growth of the plants growing on the green roof. The present study aimed to estimate the ECsw (pore water EC) of an extensive green roof substrate in lysimeters with the use of the WET-2 dielectric sensor. Half of the 48 lysimeters that simulated extensive green roofs had a substrate depth of 7.5 cm, while the other half had a 15 cm substrate depth. The warm season turfgrass Paspalum vaginatum 'Platinum TE' was established at the lysimeters, and during the summer period, it was irrigated every two days at a rate of 14 mm with NaCl solutions of various electrical conductivities (ECi): (a) 3 dS m-1, (b) 6 dS m-1, and (c) 12 dS m-1, while potable water of 0.3 dS m-1 ECi served as the control. The relation between bulk electrical conductivity, σb, and bulk dielectric permittivity, εb, of the substrate was observed to be linear for all ECi levels up to σb values of 2-2.5 dS m-1. The ECsw was predicted by employing the salinity index method which was modified to be applied to the particular case of a green roof substrate. Knowing the salinity index and organic portion (%, v/v) for a given green roof substrate, we could calculate the ECsw. It was found that the use of the salinity index method predicts reliably the ECsw up to 10-11 dS m-1, while the method overestimates ECsw at very low levels of electrical conductivity.


Asunto(s)
Salinidad , Cloruro de Sodio , Solución Salina , Conductividad Eléctrica , Plantas , Conservación de los Recursos Naturales/métodos
6.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050495

RESUMEN

Hepatic steatosis may be caused by type 2 diabetes or obesity and is one of the origins of chronic liver disease. A non-invasive technique based on microwave propagation can be a good solution to monitor hepatic tissue pathologies. The present work is devoted to the dielectric permittivity measurements in healthy and fatty liver in the microwave range. A mouse model following normal and high sugar/glucose (HFS) diets was used. We demonstrated the change in the triglyceride and glucose concentration in the hepatic tissue of HFS diet mice. The difference in the dielectric permittivity of healthy and fatty liver was observed in the range from 100 MHz to 2 GHz. The dielectric permittivity was found to be 42 in the healthy tissue and 31 in the fatty liver tissue at 1 GHz. The obtained results demonstrate that dielectric permittivity can be a sensitive tool to distinguish between healthy and fatty hepatic tissue.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Hígado , Modelos Animales de Enfermedad , Glucosa
7.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514878

RESUMEN

Soil moisture profile sensors (SMPSs) have a high potential for climate-smart agriculture due to their easy handling and ability to perform simultaneous measurements at different depths. To date, an accurate and easy-to-use method for the evaluation of long SMPSs is not available. In this study, we developed laboratory and field experiments to evaluate three different SMPSs (SoilVUE10, Drill&Drop, and SMT500) in terms of measurement accuracy, sensor-to-sensor variability, and temperature stability. The laboratory experiment features a temperature-controlled lysimeter to evaluate intra-sensor variability and temperature stability of SMPSs. The field experiment features a water level-controlled sandbox and reference TDR measurements to evaluate the soil water measurement accuracy of the SMPS. In both experiments, a well-characterized fine sand was used as measurement medium to ensure homogeneous dielectric properties in the measurement domain of the sensors. The laboratory experiments with the lysimeter showed that the Drill&Drop sensor has the highest temperature sensitivity with a decrease of 0.014 m3 m-3 per 10 °C, but at the same time showed the lowest intra- and inter-sensor variability. The field experiment with the sandbox showed that all three SMPSs have a similar performance (average RMSE ≈ 0.023 m3 m-3) with higher uncertainties at intermediate soil moisture contents. The presented combination of laboratory and field tests were found to be well suited to evaluate the performance of SMPSs and will be used to test additional SMPSs in the future.

8.
Sensors (Basel) ; 23(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36772537

RESUMEN

A high-sensitivity sensor for measuring moisture content in the air or air humidity under low pressure was designed on the basis of a half-wave coaxial microwave cavity. The method of measuring small variations in the signal phase at a cavity excitation frequency of 1.63 GHz was applied to detect low densities of water vapor. It allows the detection of variations in dielectric air permittivity in the seventh decimal place. A prototype of the sensor was tested in a vacuum chamber. It was calibrated by comparing the test results with the readings of a commercial pressure gauge and using the independent method of measuring the moisture content in rarefied air on the basis of the absorption of millimeter waves in the local line of water vapor at 183 GHz. The developed sensor can be used in laboratory experiments and full-scale geophysical research in the atmosphere onboard various aircrafts.

9.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080869

RESUMEN

In this paper, we present a new microfluidic microwave sensor loaded with a star-slotted patch for detecting the quality of edible oil. The relative dielectric permittivity and the quality of edible oil will change after being heated at a high temperature. Therefore, the quality of edible oil can be detected by measuring the relative dielectric permittivity of edible oil. The sensor is used to determine the edible oil with different dielectric permittivity by measuring the resonance frequency offset of the input reflection coefficient, which operates at 2.68 GHz. This sensor is designed based on a resonant approach to provide the best sensing accuracy and is implemented using a substrate integrated waveguide structure combined with a pentagonal slot antenna operating at 2.3~2.9 GHz. It can detect greasy liquids with the real part of the complex permittivity ranging from two to three.


Asunto(s)
Microfluídica , Microondas
10.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35161733

RESUMEN

Soil moisture is a key parameter of the climate system as it relates to plant transpiration and photosynthesis and impacts land-atmosphere interactions. Recent developments have seen an increasing number of electromagnetic sensors available commercially (EM) for soil volumetric water content (θ). Their use is constantly expanding, and they are becoming increasingly used for agricultural, ecological, and geotechnical applications and climate research, providing decision support and high-resolution data for models and machine-learning algorithms. In this study, a soil moisture sensor network consisting of 10 Sense Cap capacitance-based sensors is evaluated. Analytical performance of the sensors was determined based on laboratory and field measurements with dielectric permittivity (ε) standards and soil media substrates. Sensor response normalisation to standards of known ε was found to reduce intersensor variability and provide robust estimates of θ in soil samples with known θ. Cross-comparison with a time-domain reflectometry (TDR) instrument carried out in two soil media demonstrates good agreement between the two probes throughout the tested range. The data communication performance of the network was evaluated in terms of packet drop rate at different ranges and sampling frequencies. It was noticed that the drop rate increased with distance from the gateway, while sampling frequency had no effect. Sources of errors associated with probe installation were identified and recommendations are provided for sensor deployment. The off-the-shelf all-in-one solution provided by Sense Cap is low cost, user friendly and suitable for implementation at temporal and spatial scales once the identified shortcomings are addressed. The evaluation presented aims to aid stakeholders and users involved in soil and land management practices including crop production, soil conservation, carbon sequestration and pollutants transport.


Asunto(s)
Suelo , Agua , Agricultura , Atmósfera , Plantas , Agua/análisis
11.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36298156

RESUMEN

Soil monitoring is a key topic from several perspectives, such as moisture level control for irrigation management and anti-contamination purposes. Monitoring the latter is becoming even more important due to increasing environmental pollution. As a direct consequence, there is a strong demand for innovative monitoring systems that are low cost, provide for quasi-real time and in situ monitoring, high sensitivity, and adequate accuracy. Starting from these considerations, this paper addresses the implementation of a microwave reflectometry based-system utilizing a customized bifilar probe and a miniaturized Vector Network Analyzer (m-VNA). The main objective is to relate frequency-domain (FD) measurements to the features of interest, such as the water content and/or the percentage of some polluting substances, through an innovative automatable procedure to retrieve the Debye dielectric parameters of the soil under different conditions. The results from this study confirm the potential of microwave reflectometry for moisture monitoring and contamination detection.


Asunto(s)
Contaminación Ambiental , Agua , Suelo , Microondas
12.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336317

RESUMEN

In this work, the dielectric permittivity of four kinds of wood (Fir, Poplar, Oak, and Beech Tree), used in Italian Artworks and structures, was characterized at different humidity levels. Measurements were carried out using three different probes connected to a bench vector network analyzer: a standard WR90 X-band waveguide, a WR430 waveguide, and an open-ended coaxial probe. In particular, we investigated the dispersion model for the four wood species, showing how a log-fit model of the open-ended data presents a determination coefficient R2 > 0.990 in the 1−12 GHz frequency range. This result has proven helpful to fill the frequency gap between the measurements obtained at different water contents with the two waveguide probes showing an R2 > 0.93. Furthermore, correlating the log-fit vertical shift with the water content, it was possible to find a calibration curve with a linear characteristic. These experimental results will be helpful for on-site non-invasive water monitoring of wooden artworks or structures. Moreover, the final results show how the open-ended coaxial probe, with a measurement deviation lower than 7% from the waveguide measurements, may be used directly as a non-invasive sensor for on-site measurements.


Asunto(s)
Agua , Madera , Calibración
13.
Sensors (Basel) ; 22(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36298208

RESUMEN

A shortage of research on the impact of atmospheric parameters on the measured dielectric permittivity values of rigid polyurethane (PU) foams was identified. Therefore, the impact of temperature, pressure, and relative humidity of air in the test room on the measured values of dielectric permittivity of rigid PU foams of different densities as well as monolithic polyurethane was investigated in a year-long experimental research study with a capacitive one-side access sensor. It was shown that relative humidity has the highest correlation with the dielectric permittivity values of rigid PU materials. The detected values of parameters were linked to the water vapour mass in ambient air and its correlation with permittivity of the investigated materials was determined. The warm-up drift and warm-up time of the spectrometer were estimated experimentally. A novel methodology was demonstrated to determine the true permittivity spectrum of rigid PU foams without any involvement of the environmental chamber, desiccators, or saturated salt/water solutions. A relative increase in the measured dielectric permittivity value was estimated numerically for the entire density range of rigid PU foams, i.e., 33-1280 kg/m3 (including monolithic PU).


Asunto(s)
Poliuretanos , Vapor , Temperatura
14.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015790

RESUMEN

The study aim was to validate that dielectric permittivity measurement using the open-ended coaxial probe can be reliably modeled using electromagnetic modeling and simulations, followed by the postprocessing calculations based on the simple capacitive-load model. Saline solutions with various NaCl concentrations were used as materials under test (MUTs) to investigate how ionic conductivity affects the model validity. Two different solvers and simulation methods were used: FEKO for the frequency domain and CST for the time domain. Furthermore, we performed physical experiments with the same probe and MUTs, again implementing the capacitive-load model on the measurement data to observe the model validity. Relative error of the capacitive-load model with respect to the reference permittivity values, both in measurements and simulations, was within 10% for all cases except for the measured εr' of 1M solution at the lowest frequencies. The model yielded average relative errors well below 1% for the physiological saline, which is relevant for biological materials. The error increased for higher concentrations and for the lowest simulated frequencies but was within the declared measurement accuracy of the probe itself. This makes the simple capacitive-load model valid for all analyzed concentrations in the microwave frequency range from 0.5 to 18 GHz.


Asunto(s)
Fenómenos Electromagnéticos , Microondas , Conductividad Eléctrica
15.
Nano Lett ; 21(11): 4636-4642, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34033719

RESUMEN

We address the intrinsic polarization and screening of an external electric field in a broad range of ordered and twisted configurations of multilayer graphene, using an ab initio approach combining density functional theory and the Wannier function formalism. We show that multilayer graphene is intrinsically polarized due to the crystal field effect, an effect that is often neglected in tight-binding models of twisted bilayer graphene and similar systems. This intrinsic polarization of the order of up to a few tens of millielectronvolts has different out-of-plane alignments in ordered and twisted graphene multilayers, while the in-plane potential modulation is found to be much stronger in twisted systems. We further investigate the dielectric permittivity ε in same multilayer graphene configurations at different electric field strengths. Our findings establish a deep insight into intrinsic and extrinsic polarization in graphene multilayers and provide parameters necessary for building accurate models of these systems.

16.
Nano Lett ; 21(7): 2982-2988, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33792314

RESUMEN

Directing nanoparticles into ordered organization in polymer matrix to improve macroscopic properties of nanocomposites remains a challenge. Herein, by means of theoretical simulations, we show the high permittivity of hybrid nanostructures designed with mixtures of AB block copolymer-grafted nanoparticles and lamella-forming AC diblock copolymers. The grafted nanoparticles self-assemble into parallel stripes or highly ordered networks in the lamellae of the AC diblock copolymers. The ordered nanoparticle networks, including honeycomb-like and kagomé networks, provide bending and conductive pathways for concentrating electric fields, which results in the improvement of the permittivity. We envisage that this strategy will open a gateway to prepare hierarchically ordered functional nanocomposites with distinctive dielectric properties.

17.
Molecules ; 27(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144800

RESUMEN

Polymer nanodielectrics render a great material platform for exhibiting the intrinsic nature of incorporated particles, particularly semiconducting types, and their interfaces with the polymer matrix. Incorporating the oxide fillers with higher loading percentages (>40 vol%) encounters particular challenges in terms of dispersion, homogeneous distribution, and porosity from the process. This work investigated the dielectric loss and electrical conduction behaviors of composites containing semiconducting ZnO varistor particles of various concentrations using the epoxy impregnation method. The ZnO varistor particles increased the dielectric permittivity, loss, and electrical conductivity of the epoxy composites into three different regimes (0−50 vol%, 50−70 vol%, 70−100 vol%), particularly under an electric bias field or at higher temperatures. For lower loading fractions below 50 vol%, the dielectric responses are dominated by the insulating epoxy matrix. When loading fractions are between 50 and 70 vol%, the dielectric and electric responses are mostly associated with the semiconducting interfaces of ZnO varistor particles and ZnO−epoxy. At above 70 vol%, the apparent increase in the dielectric loss and conductivity is primarily associated with the conducting ZnO core forming the interconnected channels of electric conduction. The foam-agent-assisted ZnO varistor particle framework appears to be a better way of fabricating composites of filler loading above 80 vol%. A physical model using an equivalent capacitor, diode, and resistor in the epoxy composites was proposed to explain the different property behaviors.

18.
Molecules ; 27(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014551

RESUMEN

The effects of the sintering conditions on the phase compositions, microstructure, electrical properties, and dielectric responses of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics prepared by a solid-state reaction method were investigated. A pure phase of the Na1/2Y1/2Cu3Ti4.1O12 ceramic was achieved in all sintered ceramics. The mean grain size slightly increased with increasing sintering time (from 1 to 15 h after sintering at 1070 °C) and sintering temperature from 1070 to 1090 °C for 5 h. The primary elements were dispersed in the microstructure. Low dielectric loss tangents (tan δ~0.018-0.022) were obtained. Moreover, the dielectric constant increased from ε'~5396 to 25,565 upon changing the sintering conditions. The lowest tan δ of 0.009 at 1 kHz was obtained. The electrical responses of the semiconducting grain and insulating grain boundary were studied using impedance and admittance spectroscopies. The breakdown voltage and nonlinear coefficient decreased significantly as the sintering temperature and time increased. The presence of Cu+, Cu3+, and Ti3+ was examined using X-ray photoelectron spectroscopy, confirming the formation of semiconducting grains. The dielectric and electrical properties were described using Maxwell-Wagner relaxation, based on the internal barrier layer capacitor model.

19.
Nanotechnology ; 33(3)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34598177

RESUMEN

Polycrystalline GdFe1-xNixO3(x = 0.00, 0.02, 0.04) samples was synthesised using a glycine assisted sol-gel method to investigate the enhanced magnetic and electric properties of Ni substituted GdFeO3systems. TG-DSC analysis of prepared samples confirms that GdFe1-xNixO3have good thermal stability in high temperatures. The system has been stabilized in an orthorhombic structure with space group Pbnm.The elemental composition of GdFe1-xNixO3has been estimated from EDAX spectrum. The results showed oxygen deficiency on increasing the Ni substitution and it has been supported by Rietveld refinement. FE-SEM images and Brunauer-Emmett-Teller analysis reveals that GdFe1-xNixO3is a highly porous material and its porosity and specific area increases with Ni substitution. Magnetic measurements indicates that the system exhibited ferrimagnetic behaviour at low temperatures and canted antiferromagnetic behaviour at room temperature. Forx = 0.04 Ni content, magnetization reversal for applied field of 25 Oe has been observed. Increased coercivity of GdFeO3with Ni substitution has been attributed to the grain size effect. From electrical point of view, dielectric permittivity of GdFeO3has been enhanced with Ni substitution. This enhancement has been attributed to the cumulative effects of hopping of Fe2+-Fe3+ions, grain-grain boundary contribution, and space charge polarization. The role of grain-grain boundary contribution is evident from electric modulus spectrum. The space charge effect has been realized in both impedance spectrum and dielectric loss. Temperature-dependent dielectric studies were conducted to understand the mechanisms and various aspects that contribute to the dielectric enhancement. A highly lossy capacitive nature in theP-Eloop also suggests space charge effects due to Ni substitution in Fe sites. Availability of free charge carrier concentration is correlated with the optical properties of GdFe1-xNixO3. The decrease of optical band gap (2.5-2.21 eV) on increasing Ni content suggests the increasing electronic contribution in the system.

20.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34960598

RESUMEN

In this work, a compact dielectric sensor for the detection of adulteration in solid and liquid samples using planar resonators is presented. Six types of filter prototypes operating at 2.4 GHz are presented, optimized, numerically assessed, fabricated and experimentally validated. The obtained experimental results provided an error less than 6% with respect to the simulated results. Moreover, a size reduction of about 69% was achieved for the band stop filter and a 75% reduction for band pass filter compared to standard sensors realized using open/short circuited stub microstrip lines. From the designed filters, the miniaturised filter with Q of 95 at 2.4 GHz and size of 35 mm × 35 mm is formulated as a sensor and is validated theoretically and experimentally. The designed sensor shows better sensitivity, and it depends upon the dielectric property of the sample to be tested. Simulation and experimental validation of the designed sensor is carried out by loading different samples onto the sensor. The adulteration detection of various food samples using the designed sensor is experimentally validated and shows excellent sensing on adding adulterants to the original sample. The sensitivity of the sensor is analyzed by studying the variations in resonant frequency, scattering parameters, phase and Q factor with variation in the dielectric property of the sample loaded onto the sensor.


Asunto(s)
Microondas , Simulación por Computador , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA