Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 227(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380562

RESUMEN

From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.


Asunto(s)
Espermatozoides , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiología , Animales , Humanos , Densidad de Población , Metabolismo Energético , Recuento de Espermatozoides
2.
Oecologia ; 204(2): 339-349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38300256

RESUMEN

Among the ecological functions and services of biodiversity is the potential buffering of diseases through dilution effects where increased biodiversity results in a reduction in disease risk for humans and wildlife hosts. Whether such effects are a universal phenomenon is still under intense debate and diversity effects are little studied in cases when non-host organisms remove free-living parasite stages during their transmission from one host to the next by consumption or physical obstruction. Here, we investigated non-host diversity effects on the removal of cercarial stages of trematodes, ubiquitous parasites in aquatic ecosystems. In laboratory experiments using response surface designs, varying both diversity and density at same time, we compared three combinations of two non-hosts at four density levels: predatory crabs that actively remove cercariae from the water column via their mouth parts and gills, filter feeding oysters that passively filter cercariae from the water column while not becoming infected themselves, and seaweed which physically obstructs cercariae. The addition of a second non-host did not generally result in increased parasite removal but neutralised, amplified or reduced the parasite removal exerted by the first non-host, depending on the density and non-host combination. These non-linear non-host diversity effects were probably driven by intra- and interspecific interactions and suggest the need to integrate non-host diversity effects in understanding the links between community diversity and infection risk.


Asunto(s)
Parásitos , Animales , Humanos , Ecosistema , Biodiversidad , Conducta Predatoria , Agua
3.
Parasitol Res ; 123(6): 254, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922478

RESUMEN

The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.


Asunto(s)
Enfermedades de las Aves , Aves , Infestaciones por Garrapatas , Animales , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/parasitología , Aves/parasitología , Américas/epidemiología , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/epidemiología , Animales Salvajes/parasitología , Ecosistema , Garrapatas/fisiología , Garrapatas/clasificación , Biodiversidad , Ambiente , Prevalencia
4.
Pestic Biochem Physiol ; 203: 105984, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084788

RESUMEN

This study focuses on dilution effect of target-site resistance (TSR) to acetolactate synthase (ALS) inhibitors in Schoenoplectiella juncoides, which harbors two ALS genes, ALS1 and ALS2. We assessed gene expression, enzyme activity, and whole-plant resistance profiles across four S. juncoides lines: the susceptible line, the parental resistant lines with a homozygous mutation in either ALS1 or ALS2, and the bred progeny line with homozygous mutations in both ALS1 and ALS2. Gene expression and enzyme function showed a proportional relationship that the expression ratios of ALS1 to ALS2, approximately 70:30, were consistent with the functional ratio predicted by the double-sigmoidal plateau positions observed in enzyme assays. However, at the whole-plant level, resistance did not correlate to the putative abundance of susceptible enzyme, but the parental lines showed similar resistance to each other despite different enzyme-level resistances. This suggests a non-proportional mechanism in the reflection of physiological enzymatic profiles to whole-plant resistance profiles. These findings highlight the complexity of herbicide resistance and the need for further research to understand the mechanisms that influence resistance outcomes. Understanding these relationships is essential for developing strategies to manage herbicide resistance effectively.


Asunto(s)
Acetolactato Sintasa , Cyperaceae , Resistencia a los Herbicidas , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Cyperaceae/genética , Cyperaceae/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Genes de Plantas
5.
Ecol Lett ; 26(10): 1780-1791, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586885

RESUMEN

Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.


Asunto(s)
Gripe Aviar , Animales , Gripe Aviar/epidemiología , Ecología , Europa (Continente)/epidemiología
6.
Proc Biol Sci ; 290(1996): 20222470, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040809

RESUMEN

Identifying factors that drive infection dynamics in reservoir host populations is essential in understanding human risk from wildlife-originated zoonoses. We studied zoonotic Puumala orthohantavirus (PUUV) in the host, the bank vole (Myodes glareolus), populations in relation to the host population, rodent and predator community and environment-related factors and whether these processes are translated into human infection incidence. We used 5-year rodent trapping and bank vole PUUV serology data collected from 30 sites located in 24 municipalities in Finland. We found that PUUV seroprevalence in the host was negatively associated with the abundance of red foxes, but this process did not translate into human disease incidence, which showed no association with PUUV seroprevalence. The abundance of weasels, the proportion of juvenile bank voles in the host populations and rodent species diversity were negatively associated with the abundance index of PUUV positive bank voles, which, in turn, showed a positive association with human disease incidence. Our results suggest certain predators, a high proportion of young bank vole individuals, and a diverse rodent community, may reduce PUUV risk for humans through their negative impacts on the abundance of infected bank voles.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Animales Salvajes , Estudios Seroepidemiológicos , Arvicolinae
7.
Mol Ecol ; 32(8): 1817-1831, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35000240

RESUMEN

Changes in biodiversity may impact infectious disease transmission through multiple mechanisms. We explored the impact of biodiversity changes on the transmission of Amazonian leishmaniases, a group of wild zoonoses transmitted by phlebotomine sand flies (Psychodidae), which represent an important health burden in a region where biodiversity is both rich and threatened. Using molecular analyses of sand fly pools and blood-fed dipterans, we characterized the disease system in forest sites in French Guiana undergoing different levels of human-induced disturbance. We show that the prevalence of Leishmania parasites in sand flies correlates positively with the relative abundance of mammal species known as Leishmania reservoirs. In addition, Leishmania reservoirs tend to dominate in less diverse mammal communities, in accordance with the dilution effect hypothesis. This results in a negative relationship between Leishmania prevalence and mammal diversity. On the other hand, higher mammal diversity is associated with higher sand fly density, possibly because more diverse mammal communities harbor higher biomass and more abundant feeding resources for sand flies, although more research is needed to identify the factors that shape sand fly communities. As a consequence of these antagonistic effects, decreased mammal diversity comes with an increase of parasite prevalence in sand flies, but has no detectable impact on the density of infected sand flies. These results represent additional evidence that biodiversity changes may simultaneously dilute and amplify vector-borne disease transmission through different mechanisms that need to be better understood before drawing generalities on the biodiversity-disease relationship.


Asunto(s)
Leishmania , Leishmaniasis , Psychodidae , Animales , Humanos , Leishmania/genética , Biodiversidad , Zoonosis , Mamíferos
8.
J Anim Ecol ; 92(2): 503-513, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36519974

RESUMEN

Parasites are a crucial factor that shapes the functioning of communities throughout the world, as are gregarious macrofoulers in aquatic ecosystems. However, little is known about the effects of three-way interactions between macrofoulers, endoparasites and their hosts. We predict that macrofouling and parasite infection may act (i) independently of each other, (ii) synergistically, increasing their final negative impact on the host or (iii) antagonistically, the former weakening the negative impact of the latter. We investigated multiway relationships between an invasive freshwater filter-feeding macrofouler (the zebra mussel), digenean endoparasite and their gastropod host, Viviparus viviparus. Furthermore, we checked the recruitment of mussels in living gastropods versus their empty shells. We sampled living V. viviparus and their empty shells with attached dreissenids from a Polish dam reservoir. We counted and weighed attached mussels and determined wet weight, shell height and sex of gastropods. Then we dissected the molluscs to look for digenean larvae and gastropod embryos. We use these parameters to look for reciprocal associations between mussel fouling, parasitic infection and gastropod size and fertility, as well as to infer the most likely mechanisms of the observed relationships. Dreissenid overgrowth was associated with reduced fertility and size of viviparids, but also with a lower prevalence of digenean metacercariae (Leucochloridiomorpha sp.). We did not observe a negative influence of these digeneans on their gastropod hosts. In addition, large living viviparids and their empty shells were equally used as substrates by dreissenids, but small living gastropods were more fouled than shells of the corresponding size. A trade-off exists in the studied system: filter-feeding macrofoulers may bring some profits for their host, reducing the pressure of waterborne parasites (which may be crucial in the case of pathogenic species/life stages), although at the cost of the reduced growth and fertility of the host. Furthermore, mussels attached to mollusc hosts can exert a cascading effect on the reduced prevalence of digeneans in their final hosts, including those of medical or veterinary importance.


Asunto(s)
Gastrópodos , Trematodos , Animales , Ecosistema , Interacciones Huésped-Parásitos , Moluscos/parasitología
9.
Environ Sci Technol ; 57(6): 2602-2610, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36734469

RESUMEN

While climate change has incentivized attention on sustainable fuel sources, algae has positioned itself as a both promising and problematic biofuel feedstock. Diseases such as fungal pathogens cause costly algal feedstock crashes, but the life cycle assessments (LCAs) used to analyze the viability of algal feedstocks for biofuel have yet to consider the impact of disease on life cycle metrics. Here, we incorporate a disease model into a well-documented LCA for algal biorefineries to compare two sustainability metrics, energy return on investment (EROI) and global warming potential (GWP). We begin by showing that failure to consider disease leads to overly optimistic LCA metric outputs. Then, we compare two leading control strategies of disease─chemical and biological. Our analyses show that biological engineering of a multispecies consortium of algae has a greater positive impact on LCA metrics than chemical control of the fungal pathogen using a fungicide. We expand how and when bi-cultures might advantageously exhibit the "dilution effect" whereby differentially susceptible species exhibit compensatory dynamics that stabilize feedstock production. Our results emphasize the impact of disease and suggest that multispecies consortia of algae can be biologically engineered to reduce greenhouse gas emissions and improve the economic viability of biofuel.


Asunto(s)
Biocombustibles , Micosis , Animales , Plantas , Calentamiento Global , Estadios del Ciclo de Vida
10.
J Math Biol ; 86(5): 83, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37154947

RESUMEN

We use global sensitivity analysis (specifically, Partial Rank Correlation Coefficients) to explore the roles of ecological and epidemiological processes in shaping the temporal dynamics of a parameterized SIR-type model of two host species and an environmentally transmitted pathogen. We compute the sensitivities of disease prevalence in each host species to model parameters. Sensitivity rankings are calculated, interpreted biologically, and contrasted for cases where the pathogen is introduced into a disease-free community and cases where a second host species is introduced into an endemic single-host community. In some cases the magnitudes and dynamics of the sensitivities can be predicted only by knowing the host species' characteristics (i.e., their competitive abilities and disease competence) whereas in other cases they can be predicted by factors independent of the species' characteristics (specifically, intraspecific versus interspecific processes or a species' roles of invader versus resident). For example, when a pathogen is initially introduced into a disease-free community, disease prevalence in both hosts is more sensitive to the burst size of the first host than the second host. In comparison, disease prevalence in each host is more sensitive to its own infection rate than the infection rate of the other host species. In total, this study illustrates that global sensitivity analysis can provide useful insight into how ecological and epidemiological processes shape disease dynamics and how those effects vary across time and system conditions. Our results show that sensitivity analysis can provide quantification and direction when exploring biological hypotheses.


Asunto(s)
Especificidad del Huésped , Interacciones Huésped-Parásitos , Modelos Epidemiológicos , Prevalencia
11.
Health Care Manag Sci ; 26(4): 651-672, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526758

RESUMEN

The Dorfman pooled testing scheme is a process in which individual specimens (e.g., blood, urine, swabs, etc.) are pooled and tested together; if the merged sample tests positive for infection, then each specimen from the pool is tested individually. Through this procedure, laboratories can reduce the expected number of tests required to screen the population, as individual tests are only carried out when the pooled test detects an infection. Several different partitions of the population can be used to form the pools. In this study, we analyze the performance of ordered partitions, those in which subjects with similar probability of infection are pooled together. We derive sufficient conditions under which ordered partitions outperform other types of partitions in terms of minimizing the expected number of tests, the expected number of false negatives, and the expected number of false positive classifications. These sufficient conditions can be easily verified in practical applications once the dilution effect has been estimated. We also propose a measure of equity and present conditions under which this measure is maximized by ordered partitions.

12.
Am Nat ; 199(2): E43-E56, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35077275

RESUMEN

AbstractSpecies diversity may play an important role in the modulation of pathogen transmission through the dilution effect. Infectious disease models can help elucidate mechanisms that may underlie this effect. While many modeling studies have assumed direct host-to-host transmission, many pathogens are transmitted through the environment. We present a mathematical modeling analysis exploring conditions under which we observe the dilution effect in systems with environmental transmission where host species interact through fully or partially overlapping habitats. We measure the strength of the dilution effect by the relative decrease in the basic reproduction number of two-species assemblages compared with that of a focal host species. We find that a dilution effect is most likely when the pathogen is environmentally persistent (frequency-dependent-like transmission). The magnitude of this effect is strongest when the species with the greater epidemic potential is relatively slow to pick up pathogens in the environment (density-dependent transmission) and the species with the lesser epidemic potential is efficient at picking up pathogens (frequency-dependent transmission). These findings suggest that measurable factors, including pathogen persistence and the host's relative efficiency of pathogen pickup, can guide predictions of when biodiversity might lead to a dilution effect and may thus give concrete direction to future ecological work.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Número Básico de Reproducción , Biodiversidad , Enfermedades Transmisibles/epidemiología , Ecosistema , Humanos
13.
Stat Med ; 41(23): 4682-4696, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35879887

RESUMEN

Group (pooled) testing is becoming a popular strategy for screening large populations for infectious diseases. This popularity is owed to the cost savings that can be realized through implementing group testing methods. These methods involve physically combining biomaterial (eg, saliva, blood, urine) collected on individuals into pooled specimens which are tested for an infection of interest. Through testing these pooled specimens, group testing methods reduce the cost of diagnosing all individuals under study by reducing the number of tests performed. Even though group testing offers substantial cost reductions, some practitioners are hesitant to adopt group testing methods due to the so-called dilution effect. The dilution effect describes the phenomenon in which biomaterial from negative individuals dilute the contributions from positive individuals to such a degree that a pool is incorrectly classified. Ignoring the dilution effect can reduce classification accuracy and lead to bias in parameter estimates and inaccurate inference. To circumvent these issues, we propose a Bayesian regression methodology which directly acknowledges the dilution effect while accommodating data that arises from any group testing protocol. As a part of our estimation strategy, we are able to identify pool specific optimal classification thresholds which are aimed at maximizing the classification accuracy of the group testing protocol being implemented. These two features working in concert effectively alleviate the primary concerns raised by practitioners regarding group testing. The performance of our methodology is illustrated via an extensive simulation study and by being applied to Hepatitis B data collected on Irish prisoners.


Asunto(s)
Hepatitis B , Tamizaje Masivo , Teorema de Bayes , Materiales Biocompatibles , Simulación por Computador , Hepatitis B/diagnóstico , Humanos , Tamizaje Masivo/métodos
14.
Ecol Appl ; 32(3): e2550, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092122

RESUMEN

Disease (re)emergence appears to be driven by biodiversity decline and environmental change. As a result, it is increasingly important to study host-pathogen interactions within the context of their ecology and evolution. The dilution effect is the concept that higher biodiversity decreases pathogen transmission. It has been observed especially in zoonotic vector-borne pathosystems, yet evidence against it has been found. In particular, it is still debated how the community (dis)assembly assumptions and the degree of generalism of vectors and pathogens affect the direction of the biodiversity-pathogen transmission relationship. The aim of this study was to use empirical data and mechanistic models to investigate dilution mechanisms in two rodent-tick-pathogen systems differing in their vector degree of generalism. A community was assembled to include ecological interactions that expand from purely additive to purely substitutive. Such systems are excellent candidates to analyze the link between vector ecology, community (dis)assembly dynamics, and pathogen transmission. To base our mechanistic models on empirical data, rodent live-trapping, including tick sampling, was conducted in Wales across two seasons for three consecutive years. We have developed a deterministic single-vector, multi-host compartmental model that includes ecological relationships with non-host species, uniquely integrating theoretical and observational approaches. To describe pathogen transmission across a gradient of community diversity, the model was populated with parameters describing five different scenarios differing in ecological complexity; each based around one of the pathosystems: Ixodes ricinus (generalist tick)-Borrelia burgdorferi and I. trianguliceps (small mammals specialist tick)-Babesia microti. The results suggested that community composition and interspecific dynamics affected pathogen transmission with different dilution outcomes depending on the vector degree of generalism. The model provides evidence that dilution and amplification effects are not mutually exclusive in the same community but depend on vector ecology and the epidemiological output considered (i.e., the "risk" of interest). In our scenarios, more functionally diverse communities resulted in fewer infectious rodents, supporting the dilution effect. In the pathosystem with generalist vector we identified a hump shaped relationship between diversity and infections in hosts, while for that characterized by specialist tick, this relationship was more complex and more dependent upon specific parameter values.


Asunto(s)
Ixodes , Enfermedad de Lyme , Animales , Biodiversidad , Roedores
15.
J Environ Manage ; 302(Pt A): 113990, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34717107

RESUMEN

Many factors can affect microplastics (MPs) behaviors in aquatic environments. The effects of seasonal and meteorological conditions on MPs are not well understood. This study demonstrates the impacts of seasonality on the fate and transport, and the efficacy of MPs removal by a wastewater treatment plant. The fate and transport of MPs at a WWTP in Nonthaburi, Thailand were tracked during the dry and wet seasons of 2019-2020. Polypropylene (PP), polyethylene (PE), and toothpaste formulations were the most abundant MP types observed. Total detected MP quantities ranged between 76 and 192 particles L-1 during the dry season, and only 36-68 particles L-1 during the wet season, indicating runoff dilution effects. T-test analysis found a statistically significant difference between MP concentrations between the dry and wet seasons of 2019-2020. Spearman's correlation showed statistically strong negative relationships between MP concentrations versus wastewater flow, and MP concentrations versus precipitation; a positive correlation between MP abundance versus temperature in the treatment system was observed. During the dry seasons, MPs were mostly found in the aeration process, and were mostly rayon or polyester particles in the shape of fibers. Contrarily, in the wet seasons, MPs were detected in both the raw influent and aeration process, with PE, polyacrylate, and polyethylene terephthalate fragments dominating the make-up. MPs were also detected in the return activated sludge, thus calling for proper sludge age and drainage management. No MPs were detected in the plant's effluent during the wet season, suggesting that the plant had sufficient MPs removal capability during normal wet-season conditions. Overall, this study suggests that municipalities should focus on increasing MPs removal efficiency of wastewater treatment plants for dry seasons, while properly managing the water flows of combined sewage systems to prevent overflows that may inevitably become point-sources of MPs release into water bodies during wet seasons.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Microplásticos , Plásticos , Tailandia , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
16.
Ecol Lett ; 24(11): 2490-2505, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34482609

RESUMEN

For decades, people have reduced the transmission of pathogens by adding low-quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar 'dilution effects' occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest-quality hosts persist when diversity is lost, so that high-quality hosts dominate low-diversity communities, resulting in greater pathogen transmission. Meta-analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.


Asunto(s)
Biodiversidad , Ecología , Animales , Humanos , Plantas
17.
Ecol Lett ; 24(11): 2477-2489, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34510681

RESUMEN

Understanding why diversity sometimes limits disease is essential for managing outbreaks; however, mechanisms underlying this 'dilution effect' remain poorly understood. Negative diversity-disease relationships have previously been detected in plant communities impacted by an emerging forest disease, sudden oak death. We used this focal system to empirically evaluate whether these relationships were driven by dilution mechanisms that reduce transmission risk for individuals or from the fact that disease was averaged across the host community. We integrated laboratory competence measurements with plant community and symptom data from a large forest monitoring network. Richness increased disease risk for bay laurel trees, dismissing possible dilution mechanisms. Nonetheless, richness was negatively associated with community-level disease prevalence because the disease was aggregated among hosts that vary in disease susceptibility. Aggregating observations (which is surprisingly common in other dilution effect studies) can lead to misinterpretations of dilution mechanisms and bias towards a negative diversity-disease relationship.


Asunto(s)
Árboles , Umbellularia , Susceptibilidad a Enfermedades , Humanos , Enfermedades de las Plantas , Prevalencia
18.
Ecol Lett ; 24(9): 1859-1868, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34120404

RESUMEN

Niche theory predicts specialists which will be more sensitive to environmental perturbation compared to generalists, a hypothesis receiving broad support in free-living species. Based on their niche breadth, parasites can also be classified as specialists and generalists, with specialists infecting only a few and generalists a diverse array of host species. Here, using avian haemosporidian parasites infecting wild bird populations inhabiting the Western Ghats, India as a model system, we elucidate how climate, habitat and human disturbance affects parasite prevalence both directly and indirectly via their effects on host diversity. Our data demonstrate that anthropogenic disturbance acts to reduce the prevalence of specialist parasite lineages, while increasing that of generalist lineages. Thus, as in free-living species, disturbance favours parasite communities dominated by generalist versus specialist species. Because generalist parasites are more likely to cause emerging infectious diseases, such biotic homogenisation of parasite communities could increase disease emergence risk in the Anthropocene.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Animales , Enfermedades de las Aves/epidemiología , Aves , Interacciones Huésped-Parásitos , Humanos , Especialización
19.
Am Nat ; 198(2): 179-194, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34260871

RESUMEN

AbstractBiodiversity in communities is changing globally, including the gain and loss of host species in host-pathogen communities. Increased host diversity can cause infection prevalence in a focal host to increase (amplification) or decrease (dilution). However, it is unclear what general rules govern the context-dependent effects, in part because theories for pathogens with different transmission modes have developed largely independently. Using a two-host model, we explore how the pathogen transmission mode and characteristics of a second host (disease competence and competitive ability) influence disease prevalence in a focal host. Our work shows how the theories for pathogens with environmental transmission, density-dependent direct transmission, and frequency-dependent direct transmission can be unified. Our work also identifies general rules about how host and pathogen characteristics affect amplification/dilution. For example, higher-competence hosts promote amplification, unless they are strong interspecific competitors; strong interspecific competitors promote dilution, unless they are large sources of new infections; and dilution occurs under frequency-dependent direct transmission more than density-dependent direct transmission, unless interspecific host competition is sufficiently strong. Our work helps explain how the characteristics of the pathogen and a second host affect disease prevalence in a focal host.


Asunto(s)
Especificidad del Huésped , Prevalencia
20.
Proc Biol Sci ; 288(1952): 20210773, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34102894

RESUMEN

Disentangling the mechanisms that mediate the relationships between species diversity and disease risk has both theoretical and applied implications. We employed a model system of rodents and their Mycoplasma pathogens, in which an extreme negative diversity-disease relationship was demonstrated, to test the assumptions underlying three mechanisms that may explain this field pattern. Through quantifying the long-term dynamics and effects of the pathogen in its three host species, we estimated the between-host differences in pathogen spreading and transmission potentials, and host recovery potential and vulnerability to infection. The results suggest that one of the hosts is a pathogen amplifier and the other two hosts function as diluters. Considering the similarity in infection success and intensity among hosts, and the failure to detect any pathogen-induced damage, we could not validate the assumption underlying the hypotheses that diluters reduce the overall transmission or increase the mortality of infected hosts in the system. Instead, the results demonstrate that diluters clear the infection faster than amplifiers, supporting the possibility that the addition of diluters to the community may reduce the overall number of infected hosts through this mechanism. This study highlights the contribution of experimental studies that simultaneously explore different aspects of host-pathogen interactions in multiple hosts, in diversity-disease research.


Asunto(s)
Especificidad del Huésped , Interacciones Huésped-Patógeno , Animales , Modelos Biológicos , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA