Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(6): 1650-1664.e15, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125898

RESUMEN

Correction of disease-causing mutations in human embryos holds the potential to reduce the burden of inherited genetic disorders and improve fertility treatments for couples with disease-causing mutations in lieu of embryo selection. Here, we evaluate repair outcomes of a Cas9-induced double-strand break (DSB) introduced on the paternal chromosome at the EYS locus, which carries a frameshift mutation causing blindness. We show that the most common repair outcome is microhomology-mediated end joining, which occurs during the first cell cycle in the zygote, leading to embryos with non-mosaic restoration of the reading frame. Notably, about half of the breaks remain unrepaired, resulting in an undetectable paternal allele and, after mitosis, loss of one or both chromosomal arms. Correspondingly, Cas9 off-target cleavage results in chromosomal losses and hemizygous indels because of cleavage of both alleles. These results demonstrate the ability to manipulate chromosome content and reveal significant challenges for mutation correction in human embryos.


Asunto(s)
Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas Humanos/genética , Embrión de Mamíferos/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Ciclo Celular/genética , Línea Celular , Deleción Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Implantación del Embrión/genética , Proteínas del Ojo/genética , Fertilización , Edición Génica , Reordenamiento Génico/genética , Sitios Genéticos , Genoma Humano , Genotipo , Heterocigoto , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mutación INDEL/genética , Ratones , Mitosis , Sistemas de Lectura Abierta/genética , Polimorfismo de Nucleótido Simple/genética
2.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612738

RESUMEN

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por Recombinación
3.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266640

RESUMEN

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Asunto(s)
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga
4.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
Mol Cell ; 82(12): 2267-2297, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35508167

RESUMEN

Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.


Asunto(s)
Estructuras R-Loop , Transcripción Genética , ADN/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/genética , Inestabilidad Genómica , Humanos , Estructuras R-Loop/genética
6.
Mol Cell ; 82(10): 1924-1939.e10, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439434

RESUMEN

The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión a Telómeros , Proteína BRCA1/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
7.
Mol Cell ; 82(7): 1297-1312.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35219381

RESUMEN

Synthetic lethality through combinatorial targeting DNA damage response (DDR) pathways provides exciting anticancer therapeutic benefit. Currently, the long noncoding RNAs (lncRNAs) have been implicated in tumor drug resistance; however, their potential significance in DDR is still largely unknown. Here, we report that a human lncRNA, CTD-2256P15.2, encodes a micropeptide, named PAR-amplifying and CtIP-maintaining micropeptide (PACMP), with a dual function to maintain CtIP abundance and promote poly(ADP-ribosyl)ation. PACMP not only prevents CtIP from ubiquitination through inhibiting the CtIP-KLHL15 association but also directly binds DNA damage-induced poly(ADP-ribose) chains to enhance PARP1-dependent poly(ADP-ribosyl)ation. Targeting PACMP alone inhibits tumor growth by causing a synthetic lethal interaction between CtIP and PARP inhibitions and confers sensitivity to PARP/ATR/CDK4/6 inhibitors, ionizing radiation, epirubicin, and camptothecin. Our findings reveal that a lncRNA-derived micropeptide regulates cancer progression and drug resistance by modulating DDR, whose inhibition could be employed to augment the existing anticancer therapeutic strategies.


Asunto(s)
Endodesoxirribonucleasas , Neoplasias , Péptidos , Poli ADP Ribosilación , ARN Largo no Codificante , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Péptidos/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Mol Cell ; 81(7): 1534-1547.e4, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577776

RESUMEN

Cancers with hereditary defects in homologous recombination rely on DNA polymerase θ (pol θ) for repair of DNA double-strand breaks. During end joining, pol θ aligns microhomology tracts internal to 5'-resected broken ends. An unidentified nuclease trims the 3' ends before synthesis can occur. Here we report that a nuclease activity, which differs from the proofreading activity often associated with DNA polymerases, is intrinsic to the polymerase domain of pol θ. Like the DNA synthesis activity, the nuclease activity requires conserved metal-binding residues, metal ions, and dNTPs and is inhibited by ddNTPs or chain-terminated DNA. Our data indicate that pol θ repurposes metal ions in the polymerase active site for endonucleolytic cleavage and that the polymerase-active and end-trimming conformations of the enzyme are distinct. We reveal a nimble strategy of substrate processing that allows pol θ to trim or extend DNA depending on the DNA repair context.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Endonucleasas/metabolismo , Metales/metabolismo , Línea Celular , ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Endonucleasas/genética , Humanos , ADN Polimerasa theta
9.
Mol Cell ; 81(13): 2765-2777.e6, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102105

RESUMEN

The BRCA1-BARD1 complex directs the DNA double-strand break (DSB) repair pathway choice to error-free homologous recombination (HR) during the S-G2 stages. Targeting BRCA1-BARD1 to DSB-proximal sites requires BARD1-mediated nucleosome interaction and histone mark recognition. Here, we report the cryo-EM structure of BARD1 bound to a ubiquitinated nucleosome core particle (NCPUb) at 3.1 Å resolution and illustrate how BARD1 simultaneously recognizes the DNA damage-induced mark H2AK15ub and DNA replication-associated mark H4K20me0 on the nucleosome. In vitro and in vivo analyses reveal that the BARD1-NCPUb complex is stabilized by BARD1-nucleosome interaction, BARD1-ubiquitin interaction, and BARD1 ARD domain-BARD1 BRCT domain interaction, and abrogating these interactions is detrimental to HR activity. We further identify multiple disease-causing BARD1 mutations that disrupt BARD1-NCPUb interactions and hence impair HR. Together, this study elucidates the mechanism of BRCA1-BARD1 complex recruitment and retention by DSB-flanking nucleosomes and sheds important light on cancer therapeutic avenues.


Asunto(s)
Proteína BRCA1/química , Histonas/química , Complejos Multiproteicos/química , Nucleosomas/química , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química , Proteínas de Xenopus/química , Animales , Proteína BRCA1/genética , Histonas/genética , Humanos , Modelos Moleculares , Complejos Multiproteicos/genética , Mutación , Nucleosomas/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis
10.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453168

RESUMEN

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Annu Rev Genet ; 54: 25-46, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32663049

RESUMEN

Accurate DNA repair and replication are critical for genomic stability and cancer prevention. RAD51 and its gene family are key regulators of DNA fidelity through diverse roles in double-strand break repair, replication stress, and meiosis. RAD51 is an ATPase that forms a nucleoprotein filament on single-stranded DNA. RAD51 has the function of finding and invading homologous DNA sequences to enable accurate and timely DNA repair. Its paralogs, which arose from ancient gene duplications of RAD51, have evolved to regulate and promote RAD51 function. Underscoring its importance, misregulation of RAD51, and its paralogs, is associated with diseases such as cancer and Fanconi anemia. In this review, we focus on the mammalian RAD51 structure and function and highlight the use of model systems to enable mechanistic understanding of RAD51 cellular roles. We also discuss how misregulation of the RAD51 gene family members contributes to disease and consider new approaches to pharmacologically inhibit RAD51.


Asunto(s)
Recombinasa Rad51/genética , Animales , ADN/genética , Reparación del ADN/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Humanos
12.
Trends Genet ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789375

RESUMEN

The tumour-suppressive roles of BRCA1 and 2 have been attributed to three seemingly distinct functions - homologous recombination, replication fork protection, and single-stranded (ss)DNA gap suppression - and their relative importance is under debate. In this review, we examine the origin and resolution of ssDNA gaps and discuss the recent advances in understanding the role of BRCA1/2 in gap suppression. There are ample data showing that gap accumulation in BRCA1/2-deficient cells is linked to genomic instability and chemosensitivity. However, it remains unclear whether there is a causative role and the function of BRCA1/2 in gap suppression cannot unambiguously be dissected from their other functions. We therefore conclude that the three functions of BRCA1 and 2 are closely intertwined and not mutually exclusive.

13.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968116

RESUMEN

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Asunto(s)
Reparación del ADN , Ubiquitina-Proteína Ligasas , Humanos , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Genes Dev ; 33(19-20): 1346-1354, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575678

RESUMEN

The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions.


Asunto(s)
Recombinación Homóloga/genética , Proteína SUMO-1/metabolismo , Animales , Regulación de la Expresión Génica/genética , Humanos , Recombinasa Rad51/metabolismo , Sumoilación
15.
Genes Dev ; 33(11-12): 684-704, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048545

RESUMEN

DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
16.
Trends Genet ; 39(12): 924-940, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37806853

RESUMEN

Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Reparación del ADN/genética , ADN/genética , Daño del ADN , Reparación del ADN por Unión de Extremidades/genética
17.
Mol Cell ; 71(3): 419-427, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057197

RESUMEN

The Mre11 nuclease has been the subject of intensive investigation for the past 20 years because of the central role that Mre11/Rad50 complexes play in genome maintenance. The last two decades of work on this complex has led to a much deeper understanding of the structure, biochemical activities, and regulation of Mre11/Rad50 complexes from archaea, bacteria, and eukaryotic cells. This review will discuss some of the important findings over recent years that have illuminated roles for the Mre11 nuclease in these different contexts as well as the insights from structural biology that have helped us to understand its mechanisms of action.


Asunto(s)
Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/fisiología , Ácido Anhídrido Hidrolasas , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/genética
18.
Mol Cell ; 71(4): 621-628.e4, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30057198

RESUMEN

FANCA is a component of the Fanconi anemia (FA) core complex that activates DNA interstrand crosslink repair by monoubiquitination of FANCD2. Here, we report that purified FANCA protein catalyzes bidirectional single-strand annealing (SA) and strand exchange (SE) at a level comparable to RAD52, while a disease-causing FANCA mutant, F1263Δ, is defective in both activities. FANCG, which directly interacts with FANCA, dramatically stimulates its SA and SE activities. Alternatively, FANCB, which does not directly interact with FANCA, does not stimulate this activity. Importantly, five other patient-derived FANCA mutants also exhibit deficient SA and SE, suggesting that the biochemical activities of FANCA are relevant to the etiology of FA. A cell-based DNA double-strand break (DSB) repair assay demonstrates that FANCA plays a direct role in the single-strand annealing sub-pathway (SSA) of DSB repair by catalyzing SA, and this role is independent of the canonical FA pathway and RAD52.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación de la Incompatibilidad de ADN , ADN/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Reparación del ADN por Recombinación , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Línea Celular Tumoral , Clonación Molecular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Mariposas Nocturnas , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30017584

RESUMEN

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN Ligasa (ATP)/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku/genética , Ratones
20.
J Biol Chem ; 300(8): 107545, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992439

RESUMEN

DNA double-strand breaks (DSBs) elicit an elaborate response to signal damage and trigger repair via two major pathways: nonhomologous end-joining (NHEJ), which functions throughout the interphase, and homologous recombination (HR), restricted to S/G2 phases. The DNA damage response relies, on post-translational modifications of nuclear factors to coordinate the mending of breaks. Ubiquitylation of histones and chromatin-associated factors regulates DSB repair and numerous E3 ubiquitin ligases are involved in this process. Despite significant progress, our understanding of ubiquitin-mediated DNA damage response regulation remains incomplete. Here, we have performed a localization screen to identify RING/U-box E3 ligases involved in genome maintenance. Our approach uncovered 7 novel E3 ligases that are recruited to microirradiation stripes, suggesting potential roles in DNA damage signaling and repair. Among these factors, the DELTEX family E3 ligase DTX2 is rapidly mobilized to lesions in a poly ADP-ribosylation-dependent manner. DTX2 is recruited and retained at DSBs via its WWE and DELTEX conserved C-terminal domains. In cells, both domains are required for optimal binding to mono and poly ADP-ribosylated proteins with WWEs playing a prominent role in this process. Supporting its involvement in DSB repair, DTX2 depletion decreases HR efficiency and moderately enhances NHEJ. Furthermore, DTX2 depletion impeded BRCA1 foci formation and increased 53BP1 accumulation at DSBs, suggesting a fine-tuning role for this E3 ligase in repair pathway choice. Finally, DTX2 depletion sensitized cancer cells to X-rays and PARP inhibition and these susceptibilities could be rescued by DTX2 reexpression. Altogether, our work identifies DTX2 as a novel ADP-ribosylation-dependent regulator of HR-mediated DSB repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA