Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 410(28): 7325-7336, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30232523

RESUMEN

Fatty acid/alcohol-based hydrophobic deep eutectic solvents (DESs) have been considered to be eco-friendly alternatives to replace conventional hydrophobic organic solvents (i.e., halogenated solvents). These novel eco-friendly solvents are applied in the extraction and determination of two antibiotics (levofloxacin, LOF; ciprofloxacin, COF) in environmental water by liquid-liquid microextraction (LLME). Two different families of hydrophobic DESs, one based on fatty acids and the other on fatty alcohols, were prepared and applied as a microextraction solvent. The study results showed that 1-octanol/ tricaprylylmethylammonium chloride-based DES (DES-14) had the best extraction efficiency. The vortex-assisted method exhibited better extraction efficiency than the heating, ultrasound, and microwave auxiliary methods in LLME. The main factors affecting the vortex-assisted LLME were optimized statistically using the Box-Behnken design (BBD) combined with response surface methodology (RSM). The optimal conditions for LOF and COF were as follows: 14:174 µL DES, 5.7 min vortex-assisted time, and 8.7% NaCl, w/v. Under these conditions, hydrophobic DES-based LLME was established for extraction and determination LOF and COF from environmental water, and the extraction recoveries of LOF and COF exceeded 94.8%. The proposed hydrophobic DES-based LLME method provides high precision, good linearity, acceptable limit of detection (LOD) and limit of quantification (LOQ), and satisfactory recoveries for the targets. These results support the potential of this method as a new type of extraction medium to replace conventional hydrophobic organic solvents in various applications.


Asunto(s)
Antibacterianos/química , Ácidos Grasos/química , Alcoholes Grasos/química , Interacciones Hidrofóbicas e Hidrofílicas , Solventes/química , Ultrasonido , Agua , Contaminantes Químicos del Agua/química
2.
Adv Mater ; 36(11): e2310279, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088488

RESUMEN

The performance of large-area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3 ), using a blade coater, slot-die coater, solution shearing, ink-jet printing, and thermal evaporation. However, the fabrication of large-area all-inorganic perovskite films is not well developed. This study develops, for the first time, an eco-friendly solvent engineered all-inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2-methoxyethanol (2-ME), or a mixture of ACN and 2-ME to fabricate large-area CsPbI2.77 Br0.23 films with slot-die coater at low temperatures (40-50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot-die-coated CsPbI2.77 Br0.23 perovskite film, which is prepared from the eco-friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices.

3.
ACS Appl Mater Interfaces ; 15(20): 24658-24669, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37186869

RESUMEN

Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A-DD'D-A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π-π interactions, which improves the short-circuit current density (Jsc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (Voc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.

4.
J Control Release ; 311-312: 225-232, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31521743

RESUMEN

Emerging neoteric solvents are being the subject of growing attention due to their lower cost and environmental impact, so they are being applied in a broad spectrum of industries. Among them, the pharmaceutical sector is demanding new environmentally friendly and non-toxic solvents able to enhance drugs solubility and stability. The introduction of ionic liquids turned out to be a breakthrough in the field of Green Chemistry opening up new separation and catalysis opportunities. In this sense, the options represented by Deep Eutectic Solvents make up an attractive alternative due to the low cost of their raw material, simple synthesis, and eco-friendly character. In line with these findings, Therapeutic Deep Eutectic Solvents and Natural Deep Eutectic Solvents are new and promising alternatives to improve the bioavailability of drugs in pharmaceutical formulations. This leading article is focused on providing a general picture of the advantages and drawbacks of these new solvents as well as the main research lines and perspectives to achieve efficient drugs delivery systems.


Asunto(s)
Solventes/química , Animales , Disponibilidad Biológica , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Humanos , Solventes/administración & dosificación
5.
Adv Mater ; 31(17): e1808153, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30873701

RESUMEN

Casting of a donor:acceptor bulk-heterojunction structure from a single ink has been the predominant fabrication method of organic photovoltaics (OPVs). Despite the success of such bulk heterojunctions, the task ofcontrolling the microstructure in a single casting process has been arduous and alternative approaches are desired. To achieve OPVs with a desirable microstructure, a facile and eco-compatible sequential deposition approach is demonstrated for polymer/small-molecule pairs. Using a nominally amorphous polymer as the model material, the profound influence of casting solvent is shown on the molecular ordering of the film, and thus the device performance and mesoscale morphology of sequentially deposited OPVs can be tuned. Static and in situ X-ray scattering indicate that applying (R)-(+)-limonene is able to greatly promote the molecular order of weakly crystalline polymers and form the largest domain spacing exclusively, which correlates well with the best efficiency of 12.5% in sequentially deposited devices. The sequentially cast device generally outperforms its control device based on traditional single-ink bulk-heterojunction structure. More crucially, a simple polymer:solvent interaction parameter χ is positively correlated with domain spacing in these sequentially deposited devices. These findings shed light on innovative approaches to rationally create environmentally friendly and highly efficient electronics.

6.
Bioresour Technol ; 191: 433-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25838039

RESUMEN

In this work, neutral lipids (NLs) extraction capacity and selectivity of six solvents were firstly compared. In addition, an eco-friendly solvent combination of ethyl acetate and ethanol (EA/E) was proposed and tested for lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds and effect of extraction variables on lipid yield were intensively studied. Results indicated that lipid extraction yield was increased with solvent to biomass ratio but did not vary significantly when the value exceeded 20:1. Lipid yield was found to be strongly dependent on extraction temperature and time. Finally, fatty acid profiles of lipid were determined and results indicated that the major components were octadecanoic acid, palmitic acid, linoleic acid and linolenic acid, demonstrating that the lipid extracted from the Chlorella sp. cultivated in outdoor raceway ponds by EA/E was suitable feedstock for biodiesel production.


Asunto(s)
Acetatos/química , Biocombustibles , Chlorella/metabolismo , Lípidos/aislamiento & purificación , Chlorella/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA