Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39133054

RESUMEN

In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.


Asunto(s)
Drosophila melanogaster , Odorantes , Neuronas Receptoras Olfatorias , Animales , Odorantes/análisis , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Drosophila melanogaster/fisiología , Olfato/fisiología
2.
J Mol Cell Cardiol ; 162: 97-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487753

RESUMEN

Acute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear. In a series of in silico experiments, we probed the origin of EAs-exploring aspects of altered impulse formation and altered impulse propagation within nascent PSC-CM grafts and at the host-graft interface. To account for poor gap junctional coupling during early PSC-CM engraftment, the voltage dependence of gap junctions and the possibility of ephaptic coupling were incorporated. Inspired by cardiac development, we also studied the contributions of another feature of immature PSC-CMs, circumferential sodium channel (NaCh) distribution in PSC-CMs. Ectopic propagations emerged from nascent grafts of immature PSC-CMs at a rate of <96 bpm. Source-sink effects dictated this rate and contributed to intermittent capture between host and graft. Moreover, ectopic beats emerged from dynamically changing sites along the host-graft interface. The latter arose in part because circumferential NaCh distribution in PSC-CMs contributed to preferential conduction slowing and block of electrical impulses from host to graft myocardium. We conclude that additional mechanisms, in addition to focal ones, contribute to EAs and recognize that their relative contributions are dynamic across the engraftment process.


Asunto(s)
Miocitos Cardíacos , Células Madre Pluripotentes , Diferenciación Celular , Simulación por Computador , Miocardio , Miocitos Cardíacos/trasplante
3.
Biol Cybern ; 116(4): 461-473, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35538379

RESUMEN

Experimental and theoretical studies have shown that ephaptic coupling leads to the synchronisation and slowing down of spikes propagating along the axons within peripheral nerve bundles. However, the main focus thus far has been on a small number of identical axons, whereas realistic peripheral nerve bundles contain numerous axons with different diameters. Here, we present a computationally efficient spike propagation model, which captures the essential features of propagating spikes and their ephaptic interaction, and facilitates the theoretical investigation of spike volleys in large, heterogeneous fibre bundles. We first lay out the theoretical basis to describe how the spike in an active axon changes the membrane potential of a passive axon. These insights are then incorporated into the spike propagation model, which is calibrated with a biophysically realistic model based on Hodgkin-Huxley dynamics. The fully calibrated model is then applied to fibre bundles with a large number of axons and different types of axon diameter distributions. One key insight of this study is that the heterogeneity of the axonal diameters has a dispersive effect, and that a higher level of heterogeneity requires stronger ephaptic coupling to achieve full synchronisation between spikes.


Asunto(s)
Axones , Fibras Nerviosas , Potenciales de Acción/fisiología , Axones/fisiología , Potenciales de la Membrana , Nervios Periféricos
4.
J Physiol ; 599(21): 4779-4811, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533834

RESUMEN

It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+ ) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre-junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post-junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. KEY POINTS: Ephaptic coupling is a cardiac conduction mechanism involving nanoscale-level interactions between the sodium (Na+ ) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.


Asunto(s)
Uniones Comunicantes , Sodio , Potenciales de Acción , Iones , Miocitos Cardíacos
5.
Epilepsia ; 62(7): 1505-1517, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979453

RESUMEN

OBJECTIVE: One of the challenges in treating patients with drug-resistant epilepsy is that the mechanisms of seizures are unknown. Most current interventions are based on the assumption that epileptic activity recruits neurons and progresses by synaptic transmission. However, several experimental studies have shown that neural activity in rodent hippocampi can propagate independently of synaptic transmission. Recent studies suggest these waves are self-propagating by electric field (ephaptic) coupling. In this study, we tested the hypothesis that neural recruitment during seizures can occur by electric field coupling. METHODS: 4-Aminopyridine was used in both in vivo and in vitro preparation to trigger seizures or epileptiform activity. A transection was made in the in vivo hippocampus and in vitro hippocampal and cortical slices to study whether the induced seizure activity can recruit neurons across the gap. A computational model was built to test whether ephaptic coupling alone can account for neural recruitment across the transection. The model prediction was further validated by in vitro experiments. RESULTS: Experimental results show that electric fields generated by seizure-like activity in the hippocampus both in vitro and in vivo can recruit neurons locally and through a transection of the tissue. The computational model suggests that the neural recruitment across the transection is mediated by electric field coupling. With in vitro experiments, we show that a dielectric material can block the recruitment of epileptiform activity across a transection, and that the electric fields measured within the gap are similar to those predicted by model simulations. Furthermore, this nonsynaptic neural recruitment is also observed in cortical slices, suggesting that this effect is robust in brain tissue. SIGNIFICANCE: These results indicate that ephaptic coupling, a nonsynaptic mechanism, can underlie neural recruitment by a small electric field generated by seizure activity and could explain the low success rate of surgical transections in epilepsy patients.


Asunto(s)
Campos Electromagnéticos , Epilepsia/fisiopatología , Reclutamiento Neurofisiológico , 4-Aminopiridina , Animales , Corteza Cerebral/fisiopatología , Simulación por Computador , Convulsivantes , Epilepsia/diagnóstico , Femenino , Hipocampo/fisiopatología , Masculino , Ratones Transgénicos , Modelos Neurológicos , Valor Predictivo de las Pruebas , Ratas , Ratas Sprague-Dawley , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Transmisión Sináptica
6.
Medicina (Kaunas) ; 57(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805591

RESUMEN

Background and objectives: Non-motor symptoms in the form of increased sensitivity are often associated with the onset of idiopathic Bell's palsy (IBP). The aims were to determine whether the pain threshold in the retroauricular regions (RAR) in IBP patients and the time of its occurrence is related to IBP severity. Materials and Methods: The study was conducted among 220 respondents (142 IBP patients, 78 healthy subjects (HS)). The degree of IBP was graded using the House-Brackmann and Sunnybrook Grading Scales (II-mild dysfunction, VI-total paralysis), whereas the pain thresholds were measured using the digital pressure algometer. Results: We found no difference in the degree of the pain threshold between the right and left RAR in the HS group. IBP patients belonging to groups II, III, IV, and V had lower pain thresholds in both RARs than HS and IBP patients belonging to group VI. There was no difference in the degree of pain threshold in RAR between the affected and unaffected side in IBP patients. The incidence of retroauricular pain that precedes paralysis and ceases after its occurrence in groups II and III of IBP patients is noticeably lower and the incidence of retroauricular pain that occurred only after the onset of paralysis is more frequent. Also, we found that the incidence of retroauricular pain that precedes paralysis and ceases after its occurrence in groups V and VI of IBP patients was more frequent. Conclusions: The degree of pain threshold lowering in RAR (bilaterally) is inversely related to the severity of IBP. We suggest that the occurrence of retroauricular pain before the onset of facial weakness is associated with higher severity of IBP while the occurrence after the onset is associated with lower severity of IBP.


Asunto(s)
Parálisis de Bell , Parálisis Facial , Parálisis de Bell/diagnóstico , Parálisis de Bell/epidemiología , Humanos , Incidencia , Umbral del Dolor
7.
J Physiol ; 597(1): 249-269, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295923

RESUMEN

KEY POINTS: Slow periodic activity can propagate with speeds around 0.1 m s-1 and be modulated by weak electric fields. Slow periodic activity in the longitudinal hippocampal slice can propagate without chemical synaptic transmission or gap junctions, but can generate electric fields which in turn activate neighbouring cells. Applying local extracellular electric fields with amplitude in the range of endogenous fields is sufficient to modulate or block the propagation of this activity both in the in silico and in the in vitro models. Results support the hypothesis that endogenous electric fields, previously thought to be too small to trigger neural activity, play a significant role in the self-propagation of slow periodic activity in the hippocampus. Experiments indicate that a neural network can give rise to sustained self-propagating waves by ephaptic coupling, suggesting a novel propagation mechanism for neural activity under normal physiological conditions. ABSTRACT: Slow oscillations are a standard feature observed in the cortex and the hippocampus during slow wave sleep. Slow oscillations are characterized by low-frequency periodic activity (<1 Hz) and are thought to be related to memory consolidation. These waves are assumed to be a reflection of the underlying neural activity, but it is not known if they can, by themselves, be self-sustained and propagate. Previous studies have shown that slow periodic activity can be reproduced in the in vitro preparation to mimic in vivo slow oscillations. Slow periodic activity can propagate with speeds around 0.1 m s-1 and be modulated by weak electric fields. In the present study, we show that slow periodic activity in the longitudinal hippocampal slice is a self-regenerating wave which can propagate with and without chemical or electrical synaptic transmission at the same speeds. We also show that applying local extracellular electric fields can modulate or even block the propagation of this wave in both in silico and in vitro models. Our results support the notion that ephaptic coupling plays a significant role in the propagation of the slow hippocampal periodic activity. Moreover, these results indicate that a neural network can give rise to sustained self-propagating waves by ephaptic coupling, suggesting a novel propagation mechanism for neural activity under normal physiological conditions.


Asunto(s)
Hipocampo/fisiología , Modelos Neurológicos , Red Nerviosa , Animales , Electrodos , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones Transgénicos , Neuronas/fisiología , Transmisión Sináptica
8.
J Physiol ; 596(4): 563-589, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29210458

RESUMEN

KEY POINTS: It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. ABSTRACT: It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased peak INa at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na+ channel distribution. In the intercalated disc computer model, redistributing the Na+ channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na+ channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac INa , and our simulations reveal the functional role of the aggregation of Na+ channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation.


Asunto(s)
Potenciales de Acción , Espacio Extracelular/fisiología , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Sodio/metabolismo , Células HEK293 , Humanos , Modelos Teóricos , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Análisis Espacio-Temporal
10.
Pflugers Arch ; 468(10): 1651-61, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27510622

RESUMEN

It was recently demonstrated that cardiac sodium channels (Nav1.5) localized at the perinexus, an intercalated disc (ID) nanodomain associated with gap junctions (GJ), may contribute to electrical coupling between cardiac myocytes via an ephaptic mechanism. Impairment of ephaptic coupling by acute interstitial edema (AIE)-induced swelling of the perinexus was associated with arrhythmogenic, anisotropic conduction slowing. Given that Kir2.1 has also recently been reported to localize at intercalated discs, we hypothesized that Kir2.1 channels may reside within the perinexus and that inhibiting them may mitigate arrhythmogenic conduction slowing observed during AIE. Using gated stimulated emission depletion (gSTED) and stochastic optical reconstruction microscopy (STORM) super-resolution microscopy, we indeed find that a significant proportion of Kir2.1 channels resides within the perinexus. Moreover, whereas Nav1.5 inhibition during AIE exacerbated arrhythmogenic conduction slowing, inhibiting Kir2.1 channels during AIE preferentially increased transverse conduction velocity-decreasing anisotropy and ameliorating arrhythmia risk compared to AIE alone. Comparison of our results with a nanodomain computer model identified enrichment of both Nav1.5 and Kir2.1 at intercalated discs as key factors underlying the experimental observations. We demonstrate that Kir2.1 channels are localized within the perinexus alongside Nav1.5 channels. Further, targeting Kir2.1 modulates intercellular coupling between cardiac myocytes, anisotropy of conduction, and arrhythmia propensity in a manner consistent with a role for ephaptic coupling in cardiac conduction. For over half a century, electrical excitation in the heart has been thought to occur exclusively via gap junction-mediated ionic current flow between cells. Further, excitation was thought to depend almost exclusively on sodium channels with potassium channels being involved mainly in returning the cell to rest. Here, we demonstrate that sodium and potassium channels co-reside within nanoscale domains at cell-to-cell contact sites. Experimental and computer modeling results suggest a role for these channels in electrical coupling between cardiac muscle cells via an ephaptic mechanism working in tandem with gap junctions. This new insight into the mechanism of cardiac electrical excitation could pave the way for novel therapies against cardiac rhythm disturbances.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/fisiología , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Uniones Comunicantes/metabolismo , Cobayas , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología
11.
J Neurophysiol ; 115(4): 2033-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26823512

RESUMEN

The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function.


Asunto(s)
Potenciales de la Membrana , Modelos Neurológicos , Neuronas/fisiología , Complejo Olivar Superior/fisiología , Animales , Humanos , Complejo Olivar Superior/citología
12.
Am J Physiol Heart Circ Physiol ; 310(9): H1129-39, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945081

RESUMEN

Our laboratory previously demonstrated that perfusate sodium and potassium concentrations can modulate cardiac conduction velocity (CV) consistent with theoretical predictions of ephaptic coupling (EpC). EpC depends on the ionic currents and intercellular separation in sodium channel rich intercalated disk microdomains like the perinexus. We suggested that perinexal width (WP) correlates with changes in extracellular calcium ([Ca(2+)]o). Here, we test the hypothesis that increasing [Ca(2+)]o reduces WP and increases CV. Mathematical models of EpC also predict that reducing WP can reduce sodium driving force and CV by self-attenuation. Therefore, we further hypothesized that reducing WP and extracellular sodium ([Na(+)]o) will reduce CV consistent with ephaptic self-attenuation. Transmission electron microscopy revealed that increasing [Ca(2+)]o (1 to 3.4 mM) significantly decreased WP Optically mapping wild-type (WT) (100% Cx43) mouse hearts demonstrated that increasing [Ca(2+)]o increases transverse CV during normonatremia (147.3 mM), but slows transverse CV during hyponatremia (120 mM). Additionally, CV in heterozygous (∼50% Cx43) hearts was more sensitive to changes in [Ca(2+)]o relative to WT during normonatremia. During hyponatremia, CV slowed in both WT and heterozygous hearts to the same extent. Importantly, neither [Ca(2+)]o nor [Na(+)]o altered Cx43 expression or phosphorylation determined by Western blotting, or gap junctional resistance determined by electrical impedance spectroscopy. Narrowing WP, by increasing [Ca(2+)]o, increases CV consistent with enhanced EpC between myocytes. Interestingly, during hyponatremia, reducing WP slowed CV, consistent with theoretical predictions of ephaptic self-attenuation. This study suggests that serum ion concentrations may be an important determinant of cardiac disease expression.


Asunto(s)
Potenciales de Acción , Señalización del Calcio , Calcio/metabolismo , Comunicación Celular , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Animales , Simulación por Computador , Conexina 43/deficiencia , Conexina 43/genética , Espectroscopía Dieléctrica , Impedancia Eléctrica , Uniones Comunicantes/metabolismo , Genotipo , Hiponatremia/sangre , Hiponatremia/fisiopatología , Preparación de Corazón Aislado , Cinética , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Miocitos Cardíacos/ultraestructura , Fenotipo , Imagen de Colorante Sensible al Voltaje
13.
Pflugers Arch ; 467(10): 2093-105, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25578859

RESUMEN

It has long been held that electrical excitation spreads from cell-to-cell in the heart via low resistance gap junctions (GJ). However, it has also been proposed that myocytes could interact by non-GJ-mediated "ephaptic" mechanisms, facilitating propagation of action potentials in tandem with direct GJ-mediated coupling. We sought evidence that such mechanisms contribute to cardiac conduction. Using super-resolution microscopy, we demonstrate that Nav1.5 is localized within 200 nm of the GJ plaque (a region termed the perinexus). Electron microscopy revealed close apposition of adjacent cell membranes within perinexi suggesting that perinexal sodium channels could function as an ephapse, enabling ephaptic cell-to-cell transfer of electrical excitation. Acute interstitial edema (AIE) increased intermembrane distance at the perinexus and was associated with preferential transverse conduction slowing and increased spontaneous arrhythmia incidence. Inhibiting sodium channels with 0.5 µM flecainide uniformly slowed conduction, but sodium channel inhibition during AIE slowed conduction anisotropically and increased arrhythmia incidence more than AIE alone. Sodium channel inhibition during GJ uncoupling with 25 µM carbenoxolone slowed conduction anisotropically and was also highly proarrhythmic. A computational model of discretized extracellular microdomains (including ephaptic coupling) revealed that conduction trends associated with altered perinexal width, sodium channel conductance, and GJ coupling can be predicted when sodium channel density in the intercalated disk is relatively high. We provide evidence that cardiac conduction depends on a mathematically predicted ephaptic mode of coupling as well as GJ coupling. These data suggest opportunities for novel anti-arrhythmic therapies targeting noncanonical conduction pathways in the heart.


Asunto(s)
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/patología , Edema/metabolismo , Edema/patología , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Cobayas , Masculino , Modelos Neurológicos , Miocardio/ultraestructura
14.
J Neurophysiol ; 113(9): 3229-41, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25673735

RESUMEN

Neuronal hypersynchrony is implicated in epilepsy and other diseases. The low-frequency, spatially averaged electric fields from many thousands of neurons have been shown to promote synchrony. It remains unclear whether highly transient, spatially localized electric fields from single action potentials (ephaptic coupling) significantly affect spike timing of neighboring cells and in consequence, population synchrony. In this study, we simulated the extracellular potentials and the resulting coupling between neurons in the NEURON environment and generalized their connection rules to create an oscillator network model of a sheet of ephaptically coupled neurons. With the use of both models, we explained several aspects of epileptiform behavior not previously modeled by synaptically coupled networks. Importantly, reduction of neuron spacing induced synchronization via single-spike ephaptic coupling, agreeing with seizure suppression seen clinically and in vitro via extracellular volume adjustment. Further reduction of neuron spacing yielded locally synchronized clusters, providing a mechanism for recent in vitro observations of localized neuronal synchrony in the absence of synaptic and gap-junction coupling.


Asunto(s)
Potenciales de Acción/fisiología , Simulación por Computador , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Estimulación Eléctrica , Humanos , Transmisión Sináptica/fisiología
15.
J Integr Neurosci ; 14(2): 135-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25962399

RESUMEN

In this review paper, an overview is given of two emerging research topics that address the importance of long-range physical signaling in living biosystems. The first topic concerns the biophysical principles and the physiological significance of long-range cell-to-cell signaling through electrical signals facilitated by membrane nanotubes (MNTs) (also called "tunneling nanotubes"), namely long membrane extensions that connect cells, discovered about 10 years ago. This review paper looks at experimental results that showed electrical signals being propagated through MNTs, and that MNT-mediated electrical coupling between brain cells involves activation of low-voltage-gated calcium channels. The significance of electrical cell-to-cell coupling through MNT for neuronal communication is discussed. The second topic deals with endogenous electromagnetic fields generated by nerve cells. The review concludes that these fields are not just an "epiphenomenon" but play a fundamental role in neuronal processes. For example, electromagnetic fields from brain cells feed back to their generating cells and to other cells (ephaptic coupling) and, for example, modulate the spiking timing of them. It is also discussed that cell membranes of neurons have specific resonance properties which possibly determine the impact of endogenous electric field fluctuations with respect to field strength and frequency. In addition, it is reviewed how traveling and standing waves of the endogenous electromagnetic field produced by neuronal and non-neuronal cells may play an integral part in global neuronal network dynamics. Finally, an outlook is given on which research questions should be addressed in the future regarding these two topics.


Asunto(s)
Encéfalo/citología , Comunicación Celular/fisiología , Campos Electromagnéticos , Nanotubos , Procesamiento de Señales Asistido por Computador , Encéfalo/fisiología , Humanos
16.
Am J Physiol Heart Circ Physiol ; 306(5): H619-27, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24414064

RESUMEN

Cardiac conduction is the process by which electrical excitation spreads through the heart, triggering individual myocytes to contract in synchrony. Defects in conduction disrupt synchronous activation and are associated with life-threatening arrhythmias in many pathologies. Therefore, it is scarcely surprising that this phenomenon continues to be the subject of active scientific inquiry. Here we provide a brief review of how the conceptual understanding of conduction has evolved over the last century and highlight recent, potentially paradigm-shifting developments.


Asunto(s)
Arritmias Cardíacas/historia , Acoplamiento Excitación-Contracción , Sistema de Conducción Cardíaco , Contracción Miocárdica , Potenciales de Acción , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Cardiovasculares
17.
J Comp Neurol ; 532(6): e25624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896499

RESUMEN

The hypothalamic suprachiasmatic nucleus (SCN) is the central pacemaker for mammalian circadian rhythms. As such, this ensemble of cell-autonomous neuronal oscillators with divergent periods must maintain coordinated oscillations. To investigate ultrastructural features enabling such synchronization, 805 coronal ultrathin sections of mouse SCN tissue were imaged with electron microscopy and aligned into a volumetric stack, from which selected neurons within the SCN core were reconstructed in silico. We found that clustered SCN core neurons were physically connected to each other via multiple large soma-to-soma plate-like contacts. In some cases, a sliver of a glial process was interleaved. These contacts were large, covering on average ∼21% of apposing neuronal somata. It is possible that contacts may be the electrophysiological substrate for synchronization between SCN neurons. Such plate-like contacts may explain why the synchronization of SCN neurons is maintained even when chemical synaptic transmission or electrical synaptic transmission via gap junctions is blocked. Such ephaptic contact-mediated synchronization among nearby neurons may therefore contribute to the wave-like oscillations of circadian core clock genes and calcium signals observed in the SCN.


Three­dimensional reconstruction of SCN tissue via serial electron microscopy revealed a novel structural feature of SCN neurons that may account for interneuronal synchronization that persists even when the predominant mechanisms of neuronal communication are blocked. We found that SCN core neurons are connected by multiple soma­soma contact specializations, ultrastructural elements that could enable synchronization of tightly packed neurons organized in clustered networks. This extensive network of plate­like soma­soma contacts among clustered SCN neurons may provide insight into how ∼20,000 autonomous neuronal oscillators with a broad range of intrinsic periods remain synchronized in the absence of ordinary communication modalities, thereby conferring the resilience required for the SCN to function as the mammalian circadian pacemaker.


Asunto(s)
Ratones Endogámicos C57BL , Animales , Ratones , Neuronas del Núcleo Supraquiasmático/fisiología , Masculino , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/citología , Neuronas/fisiología
18.
Heart Rhythm ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908461

RESUMEN

Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 ß-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 ß-subunits (ß1-ß4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the ß-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by ß1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to ß1, the Scn1b gene encodes for an alternative splice variant, ß1B, which contains an identical extracellular adhesion domain to ß1 but has a unique carboxyl-terminus. Although ß1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 ß-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate ß1 and ß1B may be attractive targets for novel antiarrhythmic therapeutics.

19.
Cells ; 12(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759452

RESUMEN

Electric fields are now considered a major mechanism of epileptiform activity. However, it is not clear if another electrophysiological phenomenon, burst suppression, utilizes the same mechanism for its bursting phase. Thus, the purpose of this study was to compare the role of ephaptic coupling-the recruitment of neighboring cells via electric fields-in generating bursts in epilepsy and burst suppression. We used local injections of the GABA-antagonist picrotoxin to elicit epileptic activity and a general anesthetic, sevoflurane, to elicit burst suppression in rabbits. Then, we applied an established computational model of pyramidal cells to simulate neuronal activity in a 3-dimensional grid, with an additional parameter to trigger a suppression phase based on extra-cellular calcium dynamics. We discovered that coupling via electric fields was sufficient to produce bursting in scenarios where inhibitory control of excitatory neurons was sufficiently low. Under anesthesia conditions, bursting occurs with lower neuronal recruitment in comparison to seizures. Our model predicts that due to the effect of electric fields, the magnitude of bursts during seizures should be roughly 2-3 times the magnitude of bursts that occur during burst suppression, which is consistent with our in vivo experimental results. The resulting difference in magnitude between bursts during anesthesia and epileptiform bursts reflects the strength of the electric field effect, which suggests that burst suppression and epilepsy share the same ephaptic coupling mechanism.

20.
Prog Neurobiol ; 226: 102465, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210066

RESUMEN

We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.


Asunto(s)
Mecanotransducción Celular , Neuronas , Humanos , Neuronas/fisiología , Encéfalo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA