Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Small ; 20(25): e2307328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196157

RESUMEN

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

2.
Nano Lett ; 22(18): 7563-7571, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36103215

RESUMEN

Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.

3.
Nano Lett ; 22(17): 7028-7033, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35856652

RESUMEN

The large-scale application of direct ethanol fuel cells has long been obstructed by the sluggish ethanol oxidation reaction at the anode. Current wisdom for designing and fabricating EOR electrocatalysts has been focused on crystalline materials, which result in only limited improvement in catalytic efficiency. Here, we report the amorphous PdCu (a-PdCu) nanomaterials as superior EOR electrocatalysts. The amorphization of PdCu catalysts can significantly facilitate the C-C bond cleavage, which thereby affords a C1 path faradic efficiency as high as 69.6%. Further tailoring the size and shape of a-PdCu nanocatalysts through the delicate kinetic control can result in a maximized mass activity up to 15.25 A/mgPd, outperforming most reported catalysts. Notably, accelerated durability tests indicate that both the isotropic structure and one-dimensional shape can dramatically enhance the catalytic durability of the catalysts. This work provides valuable guidance for the rational design and fabrication of amorphous noble metal-based electrocatalysts for fuel cells.

4.
Angew Chem Int Ed Engl ; 62(38): e202308057, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37545437

RESUMEN

The crucial issue restricting the application of direct ethanol fuel cells (DEFCs) is the incomplete and sluggish electrooxidation of ethanol due to the chemically stable C-C bond thereof. Herein, a unique ethylene-mediated pathway with a 100 % C1-selectivity for ethanol oxidation reaction (EOR) is proposed for the first time based on a well-structured Pt/Al2 O3 @TiAl catalyst with cascade active sites. The electrochemical in situ Fourier transform infrared spectroscopy (FTIR) and differential electrochemical mass spectrometry (DEMS) analysis disclose that ethanol is primarily dehydrated on the surface of Al2 O3 @TiAl and the derived ethylene is further oxidized completely on nanostructured Pt. X-ray absorption and density functional theory (DFT) studies disclose the Al component doped in Pt nanocrystals can promote the EOR kinetics by lowering the reaction energy barriers and eliminating the poisonous species. Strikingly, Pt/Al2 O3 @TiAl exhibits a specific activity of 3.83 mA cm-2 Pt , 7.4 times higher than that of commercial Pt/C and superior long-term durability.

5.
Nanotechnology ; 33(33)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35533662

RESUMEN

Development of electrocatalysts with extended homogeneity and improved metal-support interactions is of urgent scientific need in the context of electrochemical energy applications. Herein, bimetallic Pt-Pd nanoparticles with good homogeneity are fabricated using a convenient solution phase chemical reduction method onto a reduced graphene oxide (rGO) support. X-ray diffraction studies revealed that Pt-Pd/rGO possesses the crystallite size of 3.1 nm. The efficacies of Pt-Pd/rGO catalyst (20 wt% Pt + 10 wt% Pd on rGO support, Pt:Pd atomic ratio = 1:1) towards ethanol electrooxidation reaction (EOR) are evaluated in acidic conditions by cyclic voltammetry using catalyst-coated glassy carbon electrode as a working electrode. With the better dispersion on rGO support the Pt-Pd/rGO nancomposite catalyst exhibit highest mass specific activity (0.358 mA/µg-Pt) which is observed to be 1.9 times of similarly synthesized 20 wt% Pt/rGO (0.189 mA/µg-Pt) and 2.5 times of commercial 20 wt% Pt/C (0.142 mA/µg-Pt), respectively. Apart from the observed improved EOR activity, the Pt-Pd/rGO catalyst exhibited better stability than Pt/rGO and Pt/C catalysts. Strong synergy offered by Pt, Pd and rGO support could contribute to the observed higher EOR activity of Pt-Pd/rGO.

6.
Nanotechnology ; 33(23)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289768

RESUMEN

In this paper, we are reporting on the fabrication of a porous silicon/Au and silicon filament/Au using the two-step Au-assisted chemical etching of p-type Si with a specific resistivity of 0.01, 1, and 12 Ω·cm when varying the Au deposition times. The structure analysis results show that with an increasing Au deposition time of up to 7 min, the thickness of the porous Si layer increases for the same etching duration (60 min), and the morphology of the layer changes from porous to filamentary. This paper shows that the uniform macro-porous layers with a thickness of 125.5-171.2µm and a specific surface area of the mesopore sidewalls of 142.5-182 m2·g-1are formed on the Si with a specific resistivity of 0.01 Ω·cm. The gradient macro-porous layers with a thickness of 220-260µm and 210-290µm, the specific surface area of the mesopore sidewalls of 3.7-21.7 m2·g-1and 17-29 m2·g-1are formed on the silicon with a specific resistivity of 1 and 12 Ω·cm, respectively. The por-Si/Au has excellent low-temperature electro oxidation performance with ethanol, the activity of ethanol oxidation is mainly due to the synergistic effect of the Au nanoparticles and porous Si. The formation mechanism of the uniform and gradient macro-porous layers and ethanol electro-oxidation on the porous/filament silicon, decorated with Au nanoparticles, was established. The por-Si/Au structures with perpendicularly oriented pores, a high por-Si layer thickness, and a low mono-Si layer thickness (with a specific resistivity of 1 Ω·cm) are optimal for an effective ethanol electro-oxidation, which has been confirmed with chronoamperometry measurements.

7.
Molecules ; 27(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335284

RESUMEN

We report here the synthesis of binderless and template-less three-dimensional (3D) pinecone-shaped Pt/TiO2/Ti mesh structure. The TiO2 hydrothermally synthesized onto Ti mesh is composed of a mixture of flower-like nanorods and vertically aligned bar-shaped structures, whereas Pt film grown by pulsed laser deposition displays a smooth surface. XRD analyses reveal an average crystallite size of 41.4 nm and 68.5 nm of the TiO2 nanorods and Pt, respectively. In H2SO4 solution, the platinum oxide formation at the Pt/TiO2/Ti mesh electrode is 180 mV more negative than that at the Pt/Ti mesh electrode, indicating that TiO2 provides oxygeneous species at lower potentials, which will facilitate the removal of CO-like intermediates and accelerate an ethanol oxidation reaction (EOR). Indeed, the Pt/TiO2/Ti mesh catalyst exhibits current activity of 1.19 mA towards an EOR at a remarkably superior rate of 4.4 times that of the Pt/Ti mesh electrode (0.27 mA). Moreover, the presence of TiO2 as a support to Pt delivers a steady-state current of 2.1 mA, with an increment in durability of 6.6 times compared to Pt/Ti mesh (0.32 mA). Pt is chosen here as a benchmark catalyst and we believe that with catalysts that perform better than Pt, such 3D pinecone structures can be useful for a variety of catalytic or photoelectrochemical reactions.

8.
Angew Chem Int Ed Engl ; 61(12): e202115735, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35001467

RESUMEN

Constructing monodispersed metal sites in heterocatalysis is an efficient strategy to boost their catalytic performance. Herein, a new strategy using monodispersed metal sites to tailor Pt-based nanocatalysts is addressed by engineering unconventional p-d orbital hybridization. Thus, monodispersed Ga on Pt3 Mn nanocrystals (Ga-O-Pt3 Mn) with high-indexed facets was constructed for the first time to drive ethanol electrooxidation reaction (EOR). Strikingly, the Ga-O-Pt3 Mn nanocatalyst shows an enhanced EOR performance with achieving 8.41 times of specific activity than that of Pt/C. The electrochemical in situ Fourier transform infrared spectroscopy results and theoretical calculations disclose that the Ga-O-Pt3 Mn nanocatalyst featuring an unconventional p-d orbital hybridization not only promote the C-C bond-breaking and rapid oxidation of -OH of ethanol, but also inhibit the generation of poisonous CO intermediate species. This work discloses a promising strategy to construct a novel nanocatalysts tailored by monodispersed metal site as efficient fuel cell catalysts.

9.
Chemistry ; 27(43): 11175-11182, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019322

RESUMEN

In this work, a facile aqueous synthesis strategy was used (complete in 5 min at room temperature) to produce large-size Pd, PdCu, and PdPtCu nanomeshes without additional organic ligands or solvent and the volume restriction of reaction solution. The obtained metallic nanomeshes possess graphene-like morphology and a large size of dozens of microns. Abundant edges (coordinatively unsaturated sites, steps, and corners), defects (twins), and mesopores are seen in the metallic ultrathin structures. The formation mechanism for porous Pd nanomeshes disclosed that they undergo oriented attachment growth along the ⟨111⟩ direction. Owing to structural and compositional advantages, PdCu porous nanomeshes with certain elemental ratios (e. g., Pd87 Cu13 ) presented enhanced electrocatalytic performance (larger mass activity, better CO tolerance and stability) toward ethanol oxidation.

10.
Small ; 16(47): e2004727, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33136339

RESUMEN

Ethanol is preferred to be oxidized into CO2 for the construction of a high-performance direct ethanol fuel cell since this complete ethanol oxidation reaction (EOR) transfers 12 electrons. However, this EOR is sluggish and has the low activity as well as poor selectivity. To promote such a favorable EOR, more exactly the cleavage selectivity of CC bonds in ethanol, phosphorus-doped silver-core-and-Pd-shell catalysts (denoted as Ag@PdP) are designed and synthesized. In the alkaline media, a Ag@Pd2 P0.2 catalyst is superior toward EOR into CO2 . It exhibits seven times higher mass activity and six times higher selectivity than the benchmark Pd/C catalyst. As confirmed by means of density functional theory calculation and in situ Fourier-transform infrared spectroscopy, such high performance stems from an increased adsorption energy of OH radicals on the Pd active sites. Meanwhile, the tensile strain effect of a core-shell structure of this Ag@Pd2 P0.2 catalyst favors the formation of adsorbed CH3 CO intermediate, the key species for the enhanced C-C cleavage into CO2 , instead of acetate. The proposed way to design and synthesize such high-performance EOR catalysts will explore the practical applications of direct alkaline ethanol fuel cells.

11.
Chemphyschem ; 20(22): 3045-3055, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31342615

RESUMEN

In the present work, the Pt(111) surface was disordered by controlling the density of {110}- and {100}-type defects. The cyclic voltammogram (CV) of a disordered surface in acid media consists of three contributions within the hydrogen adsorption/desorption region: one from the well-ordered Pt(111) symmetry and the other two transformed from the {111}-symmetry with contributions of {110}- and {100}-type surface defects. The ethanol oxidation reaction (EOR) was studied on these disordered surfaces. Electrochemical studies were performed in 0.1 M HClO4 +0.1 M ethanol using cyclic voltammetry and chronoamperometry. Changes in current densities associated to the specific potentials at which each oxidation peak appears suggest that different surface domains of disordered platinum oxidize ethanol independently. Additionally, as the surface-defect density increases, the EOR is catalysed better. This tendency is directly observed from the CV parameters because the onset and peak potentials are shifted to less positive values and accompanied by increases in the oxidation-peak current on disordered surfaces. Similarly, the CO oxidation striping confirmed this same tendency. Chronoamperometric experiments showed two opposite behaviors at short oxidation times (0.1 s). The EOR was quickly catalyzed on the most disordered surface, Pt(111)-16, and was then rapidly deactivated. These results provide fundamental information on the EOR, which contributes to the atomic-level understanding of real catalysts.

12.
Electrochim Acta ; 260: 898-904, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29622818

RESUMEN

The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems.

13.
Chemistry ; 23(24): 5799-5803, 2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28295694

RESUMEN

Well-defined palladium trigonal bipyramidal/tetrahedral nanocrystals were synthesized by an aqueous-phase hydrothermal method. The final products were a mixture of trigonal bipyramidal and tetrahedral nanocrystals. Statistics indicated that there were more trigonal bipyramids than tetrahedra in the products. Ethylenediamine tetraacetic acid disodium salt (EDTA-2Na) was proven to be essential in controlling the final shapes of palladium nanocrystals. Some control experiments were also conducted to investigate the shape evolution and formation mechanisms. The synthesized palladium nanocrystals showed enhanced catalytic properties for ethanol and glycerol electrooxidation in alkaline medium. This work provides a new method in preparing Pd nanomaterials with well-defined shapes.

14.
J Nanosci Nanotechnol ; 17(4): 2843-847, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29668195

RESUMEN

A 3-dimensional (3D) porous PtAg tubular catalyst for ethanol electro-oxidation was fabricated through a two-step alloying-dealloying approach, which was composed of the controlled alloying Pt to Ag nanowire templates and the selectively dealloying Ag from AgPt nanowires. The as-synthesized PtAg porous nanotubes (PNTs) contain ~85% Pt and ~15% Ag, with a diameter of ~80 nm, lengths between 5 to 10 µm, and a continuous porous network with pore/ligament size of 2­3 nm. The interconnected porous shell structure allows free transport of electrons and medium molecules, which results in superior performance for ethanol electro-oxidation.

15.
Molecules ; 21(9)2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27626404

RESUMEN

PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR). In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison) and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1) materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS) and differential electrochemical mass spectrometry (DEMS) indicate that Sn diminishes the amount of bridge bonded CO (COB) and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.


Asunto(s)
Monóxido de Carbono/química , Etanol/química , Platino (Metal)/química , Estaño/química , Catálisis , Técnicas Electroquímicas , Oxidación-Reducción
16.
Angew Chem Int Ed Engl ; 53(20): 5097-101, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24692362

RESUMEN

Noble metal nanocrystals (NCs) enclosed with high-index facets hold a high catalytic activity thanks to the high density of low-coordinated step atoms that they exposed on their surface. Shape-control synthesis of the metal NCs with high-index facets presents a big challenge owing to the high surface energy of the NCs, and the shape control for metal Rh is even more difficult because of its extraordinarily high surface energy in comparison with Pt, Pd, and Au. The successful synthesis is presented of tetrahexahedral Rh NCs (THH Rh NCs) enclosed by {830} high-index facets through the dynamic oxygen adsorption/desorption mediated by square-wave potential. The results demonstrate that the THH Rh NCs exhibit greatly enhanced catalytic activity over commercial Rh black catalyst for the electrooxidation of ethanol and CO.

17.
J Colloid Interface Sci ; 633: 932-947, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36509037

RESUMEN

Direct ethanol fuel cell (DEFC) has the advantages of high power density, high energy conversion efficiency and environmental friendliness, but its commercialization is restricted by factors such as insufficient activity and low anti-poisoning ability of anode catalyst for incomplete oxidation of ethanol. It is of great significance to design and prepare anode catalyst with high activity and high anti-poisoning ability that can be recycled. In this work, tubular palladium-based (Pd-based) catalysts with abundant lattice defect sites were prepared by simple and reproducible electro-displacement reactions using Cu nanowires as sacrificial template. Pd is the main catalytic element which provides adsorption sites for ethanol oxidation. Ag and Cu introduced facilitates the formation of hydroxyl groups to oxidize toxicity intermediates, and changes the d-band center position of Pd, so as to adjust the adsorption and desorption of ethanol and its intermediates on the Pd surface. At the same time, Au introduced with high potential maintains the stability of the catalyst structure. The tubular structure exposes more active sites, improves the atomic utilization rate and enhances the ability of the catalyst resisting dissolution and aggregation. The series of PdAuAgCu tubular catalysts with outer layer dendrites were prepared by electro-displacement reactions using the mixture (ethylene glycol : ultra-pure water = 3 : 1) as the reaction solvent and fivefold twinned Cu nanowires as sacrificial template. The performance evaluation of ethanol electrocatalytic oxidation showed that the Pd17Au40Ag11Cu32 tubular catalysts were prepared at 120 °C and 10 mM CTAB had excellent overall performance, with a peak mass activity of 6335 mA mgPd-1, which was 9.6 times of Pd/C (JM). The residual current density after the stability test of 3000 s was 249 mA mgPd-1, which was 3.3 times of Pd/C (JM).

18.
J Colloid Interface Sci ; 646: 616-624, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210909

RESUMEN

Pt-based multi-metallic electrocatalysts containing hetero-junctions are found to have superior catalytic performance to composition-equivalent counterparts. However, in bulk solution, controllable preparation of Pt-based hetero-junction electrocatalyst is an extremely random work owing to the complexity of solution reactions. Herein, we develop an interface-confined transformation strategy, subtly achieving Au/PtTe hetero-junction-abundant nanostructures by employing interfacial Te nanowires as sacrificing templates. By controlling the reaction conditions, composition-varied Au/PtTe can be easily obtained, such as Au75/Pt20Te5, Au55/Pt34Te11, and Au5/Pt69Te26. Moreover, each Au/PtTe hetero-junction nanostructure appears to be an array consisting of side-by-side Au/PtTe nanotrough units and can be directly used as a catalyst layer without further post-treatment. All Au/PtTe hetero-junction nanostructures show better catalytic activity towards ethanol electrooxidation than commercial Pt/C because of the combining contributions of Au/Pt hetero-junctions and the collective effects of multi-metallic elements, where Au75/Pt20Te5 exhibits the best electrocatalytic performance among three Au/PtTe nanostructures owing to its optimal composition. This study may provide technically feasible guidance for further maximizing the catalytic activity of Pt-based hybrid catalysts.

19.
ACS Appl Mater Interfaces ; 15(3): 3934-3940, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36636752

RESUMEN

Rational design and controllable synthesis of catalysts with unique structure and composition are effective ways to promote electrocatalytic ethanol oxidation, thus contributing the direct ethanol fuel cells to gain ground. Herein, 2.5 nm-thin PtIrCu ternary alloy ultrathin nanowires (UNWs) with high-density planar defects are synthesized via oriented attachment with the assistance of H2. By adjusting the contents of Ir and Cu atoms, we find that the structure of the products changed from nanowires (NWs) to nanoparticles with the increase of Ir content. Density functional theory calculations show that when Cu atoms are replaced by Ir atoms, the vacancy formation energy of Pt atoms is increased, making the Pt atoms difficult to be activated by H2, which is not conducive to the formation of a one-dimensional structure. The optimal Pt43Ir32Cu25 UNWs achieve excellent ethanol electrooxidation reaction activity (1.05 A·mg-1Pt and 1.67 mA·cm-2), for it can significantly reduce the onset potential and improve the ability of CO anti-poisoning. The significant improvement in catalytic performance is attributed to the synergistic effect of the alloy and the NW structure with high-density planar defects.

20.
ACS Nano ; 17(14): 14176-14188, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37427983

RESUMEN

In the anodic ethanol oxidation reaction (EOR) for direct ethanol fuel cells, the coverage of hydroxide (OHads) is a major adsorbent competing with C-C bond cleavage, which is necessary for complete ethanol oxidation (C1-pathway) and durability. Beyond utilizing a less-alkaline electrolyte that causes ohmic losses, an alternative strategy to optimize OHads coverage is to intentionally exploit local pH changes near the electrocatalyst surface that are governed by a combination of released H+ during EOR and OH- mass transport from the bulk solution. Here, we manipulate the local pH swing by fine-tuning the electrode porosity with Pt1-xRhx hollow sphere electrocatalysts based on particle size (250 and 350 nm) and mass loading. With the smaller size of 250 nm, Pt0.5Rh0.5 (∼50 µg cm-2) shows a high activity of 1629 A gPtRh-1 (2488 A gPt-1) in a 0.5 M KOH-containing electrolyte, which is ∼50% higher than the most active binary catalysts to date. Moreover, a higher C1-pathway Faradaic efficiency (FE) of 38.3% and 80% longer durability are achieved with a 2-fold increase in mass loading. In the more porous electrodes, a local acidic environment created by hindered OH- mass transport better optimizes OHads coverage, providing more active sites for the desired C1-pathway and a continuous EOR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA