Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
Más filtros

Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(3): 584-602, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38205639

RESUMEN

Hyperphosphatemia is a common feature in patients with impaired kidney function and is associated with increased risk of cardiovascular disease. This phenomenon extends to the general population, whereby elevations of serum phosphate within the normal range increase risk; however, the mechanism by which this occurs is multifaceted, and many aspects are poorly understood. Less than 1% of total body phosphate is found in the circulation and extracellular space, and its regulation involves multiple organ cross talk and hormones to coordinate absorption from the small intestine and excretion by the kidneys. For phosphate to be regulated, it must be sensed. While mostly enigmatic, various phosphate sensors have been elucidated in recent years. Phosphate in the circulation can be buffered, either through regulated exchange between extracellular and cellular spaces or through chelation by circulating proteins (ie, fetuin-A) to form calciprotein particles, which in themselves serve a function for bulk mineral transport and signaling. Either through direct signaling or through mediators like hormones, calciprotein particles, or calcifying extracellular vesicles, phosphate can induce various cardiovascular disease pathologies: most notably, ectopic cardiovascular calcification but also left ventricular hypertrophy, as well as bone and kidney diseases, which then propagate phosphate dysregulation further. Therapies targeting phosphate have mostly focused on intestinal binding, of which appreciation and understanding of paracellular transport has greatly advanced the field. However, pharmacotherapies that target cardiovascular consequences of phosphate directly, such as vascular calcification, are still an area of great unmet medical need.


Asunto(s)
Enfermedades Cardiovasculares , Hiperfosfatemia , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Fosfatos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Hiperfosfatemia/tratamiento farmacológico , Calcificación Vascular/etiología , Hormonas/uso terapéutico
2.
J Cell Mol Med ; 28(14): e18551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054573

RESUMEN

Despite numerous investigations on the influence of fibroblast growth factor 23 (FGF23), α-Klotho and FGF receptor-1 (FGFR1) on osteoporosis (OP), there is no clear consensus. Mendelian randomization (MR) analysis was conducted on genome-wide association studies (GWASs)-based datasets to evaluate the causal relationship between FGF23, α-Klotho, FGFR1 and OP. The primary endpoint was the odds ratio (OR) of the inverse-variance weighted (IVW) approach. Furthermore, we stably transfected FGF23-mimic or siRNA-FGF23 into human bone marrow mesenchymal stem cells (hBMSCs) in culture and determined its cell proliferation and the effects on osteogenic differentiation. Using MR analysis, we demonstrated a strong correlation between serum FGF23 levels and Heel- and femoral neck-BMDs, with subsequent ORs of 0.919 (95% CI: 0.860-0.983, p = 0.014) and 0.751 (95% CI: 0.587-0.962; p = 0.023), respectively. The expression levels of FGF23 were significantly increased in femoral neck of patients with OP than in the control cohort (p < 0.0001). Based on our in vitro investigation, after overexpression of FGF23, compared to the control group, the BMSC's proliferation ability decreased, the expression level of key osteogenic differentiation genes (RUNX2, OCN and OSX) significantly reduced, mineralized nodules and ALP activity significantly decreased. After silencing FGF23, it showed a completely opposite trend. Augmented FGF23 levels are causally associated with increased risk of OP. Similarly, FGF23 overexpression strongly inhibits the osteogenic differentiation of hBMSCs, thereby potentially aggravating the pathological process of OP.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis , Humanos , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Proliferación Celular/genética , Diferenciación Celular/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Klotho/metabolismo , Femenino , Glucuronidasa/genética , Glucuronidasa/metabolismo , Densidad Ósea/genética , Masculino , Persona de Mediana Edad , Cuello Femoral/metabolismo , Cuello Femoral/patología
3.
Pflugers Arch ; 476(8): 1279-1288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772920

RESUMEN

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Glicerofosfatos , Especies Reactivas de Oxígeno , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Glicerofosfatos/farmacología , Glicerofosfatos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Línea Celular , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Carbazoles/farmacología
4.
Pflugers Arch ; 476(5): 833-845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38386045

RESUMEN

The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.


Asunto(s)
Hipercalcemia , Hormona Paratiroidea , Receptores Sensibles al Calcio , Animales , Masculino , Ratones , Calcio/metabolismo , Modelos Animales de Enfermedad , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/congénito , Ratones Endogámicos C57BL , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
5.
Am J Physiol Renal Physiol ; 326(4): F584-F599, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299214

RESUMEN

Cardiovascular disease (CVD) is the major cause of death in chronic kidney disease (CKD) and is associated with high circulating fibroblast growth factor (FGF)23 levels. It is unresolved whether high circulating FGF23 is a mere biomarker or pathogenically contributes to cardiomyopathy. It is also unknown whether the C-terminal FGF23 peptide (cFGF23), a natural FGF23 antagonist proteolyzed from intact FGF23 (iFGF23), retards CKD progression and improves cardiomyopathy. We addressed these questions in three murine models with high endogenous FGF23 and cardiomyopathy. First, we examined wild-type (WT) mice with CKD induced by unilateral ischemia-reperfusion and contralateral nephrectomy followed by a high-phosphate diet. These mice were continuously treated with intraperitoneal implanted osmotic minipumps containing either iFGF23 protein to further escalate FGF23 bioactivity, cFGF23 peptide to block FGF23 signaling, vehicle, or scrambled peptide as negative controls. Exogenous iFGF23 protein given to CKD mice exacerbated pathological cardiac remodeling and CKD progression, whereas cFGF23 treatment improved heart and kidney function, attenuated fibrosis, and increased circulating soluble Klotho. WT mice without renal insult placed on a high-phosphate diet and homozygous Klotho hypomorphic mice, both of whom develop moderate CKD and clear cardiomyopathy, were treated with cFGF23 or vehicle. Mice treated with cFGF23 in both models had improved heart and kidney function and histopathology. Taken together, these data indicate high endogenous iFGF23 is not just a mere biomarker but pathogenically deleterious in CKD and cardiomyopathy. Furthermore, attenuation of FGF23 bioactivity by cFGF23 peptide is a promising therapeutic strategy to protect the kidney and heart from high FGF23 activity.NEW & NOTEWORTHY There is a strong correlation between cardiovascular morbidity and high circulating fibroblast growth factor 23 (FGF23) levels, but causality was never proven. We used a murine chronic kidney disease (CKD) model to show that intact FGF23 (iFGF23) is pathogenic and contributes to both CKD progression and cardiomyopathy. Blockade of FGF23 signaling with a natural proteolytic product of iFGF23, C-terminal FGF23, alleviated kidney and cardiac histology, and function in three separate murine models of high endogenous FGF23.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Animales , Ratones , Factor-23 de Crecimiento de Fibroblastos , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Biomarcadores , Fosfatos , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/complicaciones
6.
Am J Physiol Renal Physiol ; 326(1): F105-F117, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881875

RESUMEN

Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.


Asunto(s)
Lesión Renal Aguda , Ácido Fólico , Masculino , Femenino , Ratones , Animales , Lesión Renal Aguda/patología , Riñón/patología , Nitrógeno de la Urea Sanguínea , Ratones Endogámicos C57BL
7.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545651

RESUMEN

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Riñón , Ratones Noqueados , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Animales , Hormona Paratiroidea/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Fosfatos/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Ratones , Reabsorción Renal/efectos de los fármacos , Masculino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones Endogámicos C57BL
8.
Am J Kidney Dis ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38583756

RESUMEN

RATIONALE & OBJECTIVE: Klotho deficiency may affect clinical outcomes in chronic kidney disease (CKD) through fibroblast growth factor-23 (FGF23)-dependent and -independent pathways. However, the association between circulating Klotho and clinical outcomes in CKD remains unresolved and was the focus of this study. STUDY DESIGN: Prospective observational study. SETTING & PARTICIPANTS: 1,088 participants in the Chronic Renal Insufficiency Cohort (CRIC) Study with an estimated glomerular filtration rate (eGFR) of 20-70mL/min/1.73m2. EXPOSURE: Plasma Klotho level at the year-1 study visit. OUTCOMES: 5-year risks of all-cause mortality, heart failure hospitalization, atherosclerotic cardiovascular events, and a composite kidney end point that comprised a sustained 50% decrease in eGFR, dialysis, kidney transplant, or eGFR<15mL/min/1.73m2. ANALYTICAL APPROACH: We divided Klotho into 6 groups to account for its nonnormal distribution. We used Cox proportional hazards regression and subdistribution hazards models to compare survival and clinical outcomes, respectively, between Klotho groups. We sequentially adjusted for demographic characteristics, kidney function, cardiovascular risk factors, sample age, and FGF23. RESULTS: Mean eGFR was 42mL/min/1.73m2, and median Klotho concentration was 0.31ng/mL (IQR, 0.10-3.27ng/mL). When compared with the lowest Klotho group, survival (HR, 0.77; 95% CI, 0.32-1.89), heart failure hospitalization (HR, 1.10; 95% CI, 0.38-3.17), atherosclerotic cardiovascular events (HR, 1.19; 95% CI, 0.57-2.52), and CKD progression (HR, 1.05; 95% CI, 0.58-1.91) did not differ in the high Klotho group. In contrast, FGF23 was significantly associated with mortality and heart failure hospitalization independent of Klotho levels. LIMITATIONS: Despite adjustments, we cannot exclude the potential influence of residual confounding or sample storage on the results. A single measurement of plasma Klotho concentration may not capture Klotho patterns over time. CONCLUSIONS: In a large, diverse, well-characterized CKD cohort, Klotho was not associated with clinical outcomes, and Klotho deficiency did not confound the association of FGF23 with mortality or heart failure hospitalization. PLAIN-LANGUAGE SUMMARY: Klotho is a protein that is vital to mineral metabolism and aging and may protect against cardiovascular disease. Klotho levels decrease in chronic kidney disease (CKD), but the association between Klotho and clinical outcomes in CKD remains uncertain. In a prospective cohort study of more than 1,000 people with CKD, circulating Klotho levels were not associated with kidney disease progression, cardiovascular outcomes, or mortality. These results suggest that the decrease in circulating Klotho levels in CKD does not play a prominent role in the development of poor clinical outcomes.

9.
Cytokine ; 176: 156508, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38266461

RESUMEN

PURPOSE: This study aimed to investigate the expression of fibroblast growth factor 23 (FGF23) in pregnant women with preeclampsia and elucidate its role in promoting placental angiogenesis through the ERK1/2-EGR-1 signaling pathway. METHODS: Serum FGF23 levels were measured by ELISA in healthy pregnant women and patients with preeclampsia during the first, second, and third trimesters of pregnancy. Wound healing, Transwell, and tube formation assays were performed to investigate the effects of FGF23 on cell migration, invasion and tube formation. The expression of vascular endothelial growth factor A (VEGF-A) and its upstream signaling molecules, p-ERK, and EGR-1, in placental tissues was detected by RT-qPCR and western blotting. Additionally, the effect of FGF23 on VEGF-A, p-ERK, and EGR-1 expression was further explored in vitro. RESULTS: Serum FGF23 levels increased with gestational age. During the third trimester, the control group exhibited a more pronounced increase in FGF23 levels than the preeclampsia group. Administering exogenous FGF23 promoted trophoblast cell migration, invasion and enhanced tube formation in vascular endothelial cells. The expression levels of VEGF-A, p-ERK, and EGR-1 in the placental tissues were significantly lower in the preeclampsia group than in the control group. In vitro experiments confirmed that FGF23 up-regulated VEGF-A expression through the p-ERK/EGR-1 signaling pathway. CONCLUSION: The serum level of FGF23 decreased in pregnant women with preeclampsia, inhibiting the ERK1/2-EGR-1 pathway and resulting in decreased expression of VEGF-A, thereby inhibiting placental angiogenesis. This could be a potential mechanism involved in the progression of preeclampsia.


Asunto(s)
Preeclampsia , Factor A de Crecimiento Endotelial Vascular , Femenino , Humanos , Embarazo , Angiogénesis , Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas , Placenta/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Am J Nephrol ; 55(2): 187-195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38128487

RESUMEN

INTRODUCTION: Fibroblast growth factor 23 (FGF23) has direct effects on the vasculature and myocardium, and high levels of FGF23 are a risk factor for cardiovascular disease (CVD); however, the impact of FGF23 on CVD in primary proteinuric glomerulopathies has not been addressed. METHODS: The associations of baseline plasma intact FGF23 levels with resting blood pressure (BP) and lipids over time among adults and children with proteinuric glomerulopathies enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) were analyzed using generalized estimating equation regression analyses. Models were adjusted for age, sex, glomerular diagnosis, follow-up time, estimated glomerular filtration rate, urine protein/creatinine ratio, obesity, and serum phosphorous levels. RESULTS: Two hundred and four adults with median FGF23 77.5 (IQR 51.3-119.3) pg/mL and 93 children with median FGF23 62.3 (IQR 44.6-83.6) pg/mL were followed for a median of 42 (IQR 20.5-54) months. In adjusted models, each 1 µg/mL increase in FGF23 was associated with a 0.3 increase in systolic BP index at follow-up (p < 0.001). Greater baseline FGF23 was associated with greater odds of hypertensive BP (OR = 1.0003; 95% CI 1.001-1.006, p = 0.03) over time. Compared to tertile 1, tertile 2 (OR = 2.1; 95% CI 1.12-3.99, p = 0.02), and tertile 3 (OR = 3; 95% CI 1.08-8.08, p = 0.04), FGF23 levels were associated with greater odds of hypertensive BP over time. Tertile 2 was associated with greater triglycerides compared to tertile 1 (OR = 48.1; 95% CI 4.4-91.9, p = 0.03). CONCLUSION: Overall, higher baseline FGF23 was significantly associated with hypertensive BP over time in individuals with proteinuric glomerulopathies. Further study of FGF23 as a therapeutic target for reducing CVD in proteinuric glomerular disease is warranted.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Adulto , Niño , Humanos , Presión Sanguínea/fisiología , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Factores de Riesgo
11.
J Bone Miner Metab ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060498

RESUMEN

The kidneys play an important role in the regulation of phosphate and calcium balance and serum concentrations, coordinated by fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and 1,25-dihydroxyvitamin D (1,25D). In patients with chronic kidney disease (CKD), this regulation is impaired, leading to CKD-mineral and bone disorder (CKD-MBD), characterized by decreased 1,25D, elevated FGF23, secondary hyperparathyroidism, hyperphosphatemia, bone abnormalities, and vascular and soft-tissue calcification. While bone abnormalities associated with CKD-MBD, known as renal osteodystrophy, have been recognized as the most typical interaction between the kidney and bone, a number of other kidney-bone interactions have been identified, for which our knowledge of the pathogenesis of CKD-MBD has played an important role. This article summarizes recent findings on CKD-MBD and explores the crosstalk between the kidney and bone from the perspective of CKD-MBD.

12.
Pediatr Nephrol ; 39(3): 837-847, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37752381

RESUMEN

BACKGROUND: Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that plays a central role in chronic kidney disease-mineral bone disorder and is associated with CKD progression and cardiovascular morbidity. Factors related to CKD-associated anemia, including iron deficiency, can increase FGF23 production. This study aimed to assess whether anemia and/or iron deficiency are associated with increased circulating concentrations of FGF23 in the large, well-characterized Chronic Kidney Disease in Children (CKiD) study cohort. METHODS: Hemoglobin concentrations, iron parameters, C-terminal (total) FGF23, intact FGF23, and relevant covariables were measured in cross-sectional analysis of CKiD study subjects. RESULTS: In 493 pediatric patients with CKD (median [interquartile range] age 13 [9, 16] years), the median estimated glomerular filtration rate was 48 [35, 61] ml/min/1.73 m2, and 103 patients (21%) were anemic. Anemic subjects had higher total FGF23 concentrations than non-anemic subjects (204 [124, 390] vs. 109 [77, 168] RU/ml, p < 0.001). In multivariable linear regression modeling, anemia was independently associated with higher total FGF23, after adjustment for demographic, kidney-related, mineral metabolism, and inflammatory covariables (standardized ß (95% confidence interval) 0.10 (0.04, 0.17), p = 0.002). In the subset of subjects with available iron parameters (n = 191), iron deficiency was not associated with significantly higher total FGF23 concentrations. In the subgroup that had measurements of both total and intact FGF23 (n = 185), in fully adjusted models, anemia was significantly associated with higher total FGF23 (standardized ß (95% CI) 0.16 (0.04, 0.27), p = 0.008) but not intact FGF23 (standardized ß (95% CI) 0.02 (-0.12, 0.15), p = 0.81). CONCLUSIONS: In this cohort of pediatric patients with CKD, anemia was associated with increased total FGF23 levels but was not independently associated with elevated intact FGF23, suggesting possible effects on both FGF23 production and cleavage. Further studies are warranted to investigate non-mineral factors affecting FGF23 production and metabolism in CKD.


Asunto(s)
Anemia , Deficiencias de Hierro , Insuficiencia Renal Crónica , Adolescente , Niño , Humanos , Anemia/epidemiología , Anemia/etiología , Estudios Transversales , Factores de Crecimiento de Fibroblastos/metabolismo , Hierro , Minerales , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/metabolismo
13.
Age Ageing ; 53(5)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770543

RESUMEN

CONTEXT: Chronic kidney disease (CKD) leads to alterations in fibroblast growth factor 23 (FGF23) and the renal-bone axis. This may be partly driven by altered inflammation and iron status. Vitamin D supplementation may reduce inflammation. OBJECTIVE AND METHODS: Older adults with early CKD (estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73 m2; CKDG3a/b; n = 35) or normal renal function (eGFR >90 ml/min/1.73 m2; CKDG1; n = 35) received 12,000, 24,000 or 48,000 IU D3/month for 1 year. Markers of the renal-bone axis, inflammation and iron status were investigated pre- and post-supplementation. Predictors of c-terminal and intact FGF23 (cFGF23; iFGF23) were identified by univariate and multivariate regression. RESULTS: Pre-supplementation, comparing CKDG3a/b to CKDG1, plasma cFGF23, iFGF23, PTH, sclerostin and TNFα were significantly higher and Klotho, 1,25-dihydroxyvitamin D and iron were lower. Post-supplementation, only cFGF23, 25(OH)D and IL6 differed between groups. The response to supplementation differed between eGFR groups. Only in the CKDG1 group, phosphate decreased, cFGF23, iFGF23 and procollagen type I N-propeptide increased. In the CKDG3a/b group, TNFα significantly decreased, and iron increased. Plasma 25(OH)D and IL10 increased, and carboxy-terminal collagen crosslinks decreased in both groups. In univariate models cFGF23 and iFGF23 were predicted by eGFR and regulators of calcium and phosphate metabolism at both time points; IL6 predicted cFGF23 (post-supplementation) and iFGF23 (pre-supplementation) in univariate models. Hepcidin predicted post-supplementation cFGF23 in multivariate models with eGFR. CONCLUSION: Alterations in regulators of the renal-bone axis, inflammation and iron status were found in early CKD. The response to vitamin D3 supplementation differed between eGFR groups. Plasma IL6 predicted both cFGF23 and iFGF23 and hepcidin predicted cFGF23.


Asunto(s)
Biomarcadores , Suplementos Dietéticos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Tasa de Filtración Glomerular , Hierro , Riñón , Insuficiencia Renal Crónica , Vitamina D , Humanos , Anciano , Masculino , Femenino , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/tratamiento farmacológico , Tasa de Filtración Glomerular/efectos de los fármacos , Biomarcadores/sangre , Factores de Crecimiento de Fibroblastos/sangre , Hierro/sangre , Riñón/fisiopatología , Riñón/efectos de los fármacos , Vitamina D/sangre , Vitamina D/análogos & derivados , Anciano de 80 o más Años , Resultado del Tratamiento , Inflamación/sangre , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/sangre , Factores de Edad , Colecalciferol/administración & dosificación , Colecalciferol/sangre , Factores de Tiempo , Huesos/efectos de los fármacos , Huesos/metabolismo
14.
Cell Biochem Funct ; 42(6): e4107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39154288

RESUMEN

Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.


Asunto(s)
Aterosclerosis , Osteocalcina , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/patología , Animales , Osteocalcina/metabolismo , Osteopontina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Osteoprotegerina/metabolismo , Huesos/metabolismo , Huesos/patología
15.
J Endocrinol Invest ; 47(4): 873-882, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37991698

RESUMEN

OBJECTIVE: FGF23 measurement may have a diagnostic role to investigate patients with phosphate disorders. However, normal values for infants, children, and adolescents have not been defined. METHODS: In a total of 282 (males 145, females 137) healthy infants (n = 30), prepubertal (n = 147), pubertal (n = 59), and postpubertal (n = 46), and in twenty patients with X-linked hypophosphatemic rickets (XLH, age 10.2 ± 5.6 years) serum phosphate (automated analyzer), and plasma intact FGF23 (immunochemiluminescent sandwich assay, DiaSorin) concentrations were measured. RESULTS: Intact FGF23 concentrations were higher in healthy infants than in prepubertal (P < 0.01) and postpubertal subjects (P < 0.05); pubertal subjects showed higher values (P < 0.05) than postpubertal subjects. Serum phosphate concentrations were higher (P < 0.001) in healthy infants than in prepubertal, pubertal, and postpubertal subjects. Pubertal subjects had higher (P < 0.001) serum phosphate concentrations than postpubertal subjects. Intact FGF23 and serum phosphate concentrations did not differ (P = NS) by sex, age of menarche, and time after menarche. In healthy subjects, there was no correlation between intact FGF23 and serum phosphate concentrations. Intact FGF23 concentrations were higher (P < 0.0001) in patients with XLH than in healthy subjects according to chronological age and pubertal development. In all patients, intact FGF23 concentrations were above 40 pg/mL; intact FGF23 concentrations were inversely correlated with serum phosphate concentrations (r = -0.65; P < 0.01). CONCLUSION: In healthy subjects, chronological age and puberty were main determinants of intact FGF23 concentrations. Intact FGF23 concentrations may be a useful marker for the early diagnosis of XLH in pediatric patients.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Masculino , Lactante , Femenino , Humanos , Niño , Adolescente , Preescolar , Factores de Crecimiento de Fibroblastos , Fosfatos
16.
Clin Exp Nephrol ; 28(7): 636-646, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38402503

RESUMEN

BACKGROUND: Iron deficiency anemia (IDA) increases levels of C-terminal fibroblast growth factor 23 (cFGF23) and platelet count (PLT), each of which is associated with cardiovascular events. Therefore, we hypothesized that iron replacement with ferric citrate hydrate (FC) would decrease cFGF23 levels and PLT in patients with IDA. METHODS: In a randomized, open-label, multicenter, 24-week clinical trial, patients with non-dialysis-dependent chronic kidney disease (CKD) and non-CKD complicated by IDA (8.0 ≤ hemoglobin < 11.0 g/dL; and serum ferritin < 50 ng/mL [CKD]; < 12 ng/mL [non-CKD]) were randomized 1:1 to FC-low (500 mg: approximately 120 mg elemental iron/day) or FC-high (1000 mg: approximately 240 mg elemental iron/day). If sufficient iron replacement had been achieved after week 8, further treatment was discontinued. RESULTS: Seventy-three patients were allocated to FC-low (CKD n = 21, non-CKD n = 15) and FC-high (CKD n = 21, non-CKD n = 16). Regardless of CKD status, FC increased serum ferritin and transferrin saturation, did not change intact FGF23 or serum phosphorus, but decreased cFGF23. In FC-low group, median changes in cFGF23 from baseline to week 8 were -58.00 RU/mL in CKD and -725.00 RU/mL in non-CKD; in FC-high group, the median changes were -66.00 RU/mL in CKD and -649.50 RU/mL in non-CKD. By week 8, FC treatment normalized PLT in all patients with high PLT at baseline (>35.2 × 104/µL; FC-low: 1 CKD, 8 non-CKD; FC-high: 3 CKD, 8 non-CKD). CONCLUSION: Regardless of CKD status, iron replacement with FC decreased elevated cFGF23 levels and normalized elevated PLT in patients with IDA. CLINICAL TRIAL REGISTRATION NUMBER: jRCT2080223943.


Asunto(s)
Anemia Ferropénica , Compuestos Férricos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Insuficiencia Renal Crónica , Humanos , Factores de Crecimiento de Fibroblastos/sangre , Compuestos Férricos/uso terapéutico , Compuestos Férricos/administración & dosificación , Masculino , Femenino , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico , Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/sangre , Persona de Mediana Edad , Anciano , Recuento de Plaquetas , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Ferritinas/sangre , Hematínicos/uso terapéutico , Resultado del Tratamiento , Adulto
17.
Endocr J ; 71(4): 335-343, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38556320

RESUMEN

Bone secrets the hormone, fibroblast growth factor 23 (FGF23), as an endocrine organ to regulate blood phosphate level. Phosphate is an essential mineral for the human body, and around 85% of phosphate is present in bone as a constituent of hydroxyapatite, Ca10(PO4)6(OH)2. Because hypophosphatemia induces rickets/osteomalacia, and hyperphosphatemia results in ectopic calcification, blood phosphate (inorganic form) level must be regulated in a narrow range (2.5 mg/dL to 4.5 me/dL in adults). However, as yet it is unknown how bone senses changes in blood phosphate level, and how bone regulates the production of FGF23. Our previous data indicated that high extracellular phosphate phosphorylates FGF receptor 1 (FGFR1) in an unliganded manner, and its downstream intracellular signaling pathway regulates the expression of GALNT3. Furthermore, the post-translational modification of FGF23 protein via a gene product of GALNT3 is the main regulatory mechanism of enhanced FGF23 production due to high dietary phosphate. Therefore, our research group proposes that FGFR1 works as a phosphate-sensing receptor at least in the regulation of FGF23 production and blood phosphate level, and phosphate behaves as a first messenger. Phosphate is involved in various effects, such as stimulation of parathyroid hormone (PTH) synthesis, vascular calcification, and renal dysfunction. Several of these responses to phosphate are considered as phosphate toxicity. However, it is not clear whether FGFR1 is involved in these responses to phosphate. The elucidation of phosphate-sensing mechanisms may lead to the identification of treatment strategies for patients with abnormal phosphate metabolism.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fosfatos , Humanos , Fosfatos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Huesos/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Hiperfosfatemia/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
18.
Biochem J ; 480(9): 685-699, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132631

RESUMEN

The Na+-dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na+/H+ Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein, establishes NPT2A membrane localization and is required for hormone-inhibitable phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg495His or Arg495Cys variants within the internal PDZ motif. The wild-type internal 494TRL496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494AAA496 substitution blocked hormone-inhibitable phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg495His or Arg495Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast with WT NPT2A, NPT2A Arg495His, or Arg495Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg495 changes the electrostatics, preventing phosphorylation of the upstream Thr494, interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxy-terminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.


Asunto(s)
Hipofosfatemia , Fosfatos , Niño , Humanos , Ligandos , Fosfatos/metabolismo , Hormonas , Mutación , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
19.
BMC Nephrol ; 25(1): 54, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347520

RESUMEN

BACKGROUND: Intravenous iron is commonly used in patients with non-dialysis-dependent chronic kidney disease (CKD). Modern intravenous iron compounds (e.g. ferric derisomaltose (FDI), ferric carboxymaltose (FCM)) are increasingly utilized with similar efficacy. A differential effect in terms of hypophosphatemia has been noted following administration of FCM, which may be related to fibroblast growth factor 23 (FGF23). This study was designed to examine the comparative effects of FDI and FCM on FGF23, phosphate and other markers of bone turnover. METHODS: The single-center double-blind randomized controlled trial "Iron and Phosphaturia - ExplorIRON-CKD" primarily assessed the effects of FCM and FDI on intact FGF23 and phosphate, whilst also studying the impact on vitamin D, parathyroid hormone and phosphaturia. Bone markers including alkaline phosphatase, bone-specific alkaline phosphatase, procollagen type 1 N-terminal propeptide and carboxy-terminal collagen cross-linked telopeptide were monitored. Non-dialysis-dependent CKD patients (stage 3a-5) with iron deficiency with/without anemia (serum ferritin < 200 µg/L or transferrin saturation = 20% and serum ferritin 200-299 µg/L) were randomized to receive FDI or FCM in a 1:1 ratio. At baseline 1000 mg of intravenous iron was administered followed by 500-1000 mg at 1 month to achieve replenishment. Measurements were performed at baseline, 1-2 days following iron administration, 2 weeks, 1 month (second iron administration), 1-2 days following second administration, 2 months and 3 months following initial infusion. RESULTS: Twenty-six patients participated in the trial; 14 randomized to FDI and 12 to FCM. Intact FGF23 increased following administration of iron, and the increase was significantly higher with FCM compared to FDI (Baseline to 1-2 days following 1st administration: FDI: 3.0 (IQR: - 15.1 - 13.8) % vs. FCM: 146.1 (IQR: 108.1-203.1) %; p < 0.001 and Baseline to 1-2 days following 2nd administration: FDI: 3.2 (IQR: - 3.5 - 25.4) % vs. FCM: 235.1 (138.5-434.6) %; p = 0.001). Phosphate levels decreased in the FCM group, causing a significant difference versus FDI 2 weeks following administration of the first dose. A significantly greater decrease in 1,25 (OH)2 Vitamin D was noted with FCM. Several markers of bone turnover significantly changed following administration of FCM but not FDI. CONCLUSIONS: The study suggests a differential effect on FGF23 following administration of FCM compared to FDI in non-dialysis-dependent CKD patients, similar to other patient groups. This may lead to changes consistent with hypovitaminosis D and alterations in bone turnover with potential clinical consequences. Further definitive studies are required to understand these differences of intravenous iron compounds. TRIAL REGISTRATION: European Union Drug Regulating Authorities Clinical Trials Database (EudraCT) number: 2019-004370-26 ( https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-004370-26/GB ) (First date of trial registration: 03/12/2019).


Asunto(s)
Anemia Ferropénica , Hipofosfatemia Familiar , Maltosa , Insuficiencia Renal Crónica , Humanos , Fosfatasa Alcalina , Anemia Ferropénica/tratamiento farmacológico , Compuestos Férricos , Ferritinas , Factor-23 de Crecimiento de Fibroblastos , Hipofosfatemia Familiar/tratamiento farmacológico , Hierro , Maltosa/análogos & derivados , Fosfatos , Insuficiencia Renal Crónica/tratamiento farmacológico , Método Doble Ciego
20.
Ecotoxicol Environ Saf ; 272: 116101, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359653

RESUMEN

Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.


Asunto(s)
Cardamine , Selenio , Ratones , Animales , Selenio/farmacología , Selenio/metabolismo , Cadmio , Ratones Endogámicos C57BL , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA