RESUMEN
Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal (HPG) axis. The association between MKRN3 gene variants and central precocious puberty (CPP) has been repeatedly examined. In a recent study, MKRN3 has been assigned a role of tumor suppressor in lung carcinogenesis. Therefore, it is hypothesized that MKRN3 may be the link between CPP and lung cancer (LC), and certain MKRN3 gene variants may affect individuals' susceptibility to CPP and LC. The rs12441287, rs6576457 and rs2239669 in the MKRN3 gene were selected as the target variants. Sanger sequencing was applied to genotype them in two sets of case-control cohorts, namely 384 CPP girls and 422 healthy girls, 550 LC patients and 800 healthy controls. The results showed that rs6576457 but not rs12441287 or rs2239669 was significantly associated with the risk of CPP and LC. Their association with CPP risk was further confirmed in the following meta-analysis. Subsequent functional assays revealed that the rs6576457 genotypes were correlated with differentially expressed MKRN3, and the rs6576457 alleles affected the transcription repressor Oct-1 binding affinity to the MKRN3 promoter. Collectively, the MKRN3 gene rs6576457 may participate in the CPP pathology and LC tumorigenesis in the Hubei Chinese population. However, the present findings should be validated in additional investigations with larger samples from different ethnic populations.
RESUMEN
Identifying etiological risk factors is significant for preventing and treating patients with polycystic ovary syndrome (PCOS). Through genetic variation, Mendelian randomization (MR) assesses causal associations between PCOS risk and related exposure factors. This emerging technology has provided evidence of causal associations of anti-Müllerian hormone (AMH) levels, sex hormone-binding globulin (SHBG) levels, menopause age, adiposity, insulin resistance (IR), depression, breast cancer, ovarian cancer, obsessive-compulsive disorder (OCD), and forced vital capacity (FVC) with PCOS, while lacking associations of type 2 diabetes mellitus (T2DM), coronary heart disease (CHD), stroke, anxiety disorder (AD), schizophrenia (SCZ), bipolar disorder (BIP), and offspring birth weight with PCOS. In this review, we briefly introduce the concept and methodology of MR in terms of the opportunities and challenges in this field based on recent results obtained from MR analyses involving PCOS.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Hormona Antimülleriana/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Resistencia a la Insulina/genética , Análisis de la Aleatorización Mendeliana , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/genéticaRESUMEN
Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.
Asunto(s)
Exoma , Exoma/genética , Frecuencia de los Genes/genética , Humanos , Estudios Prospectivos , Secuenciación del Exoma/métodos , Secuenciación Completa del GenomaRESUMEN
ABCG2 is an important ATP-binding cassette transporter impacting the absorption and distribution of over 200 chemical toxins and drugs. ABCG2 also reduces the cellular accumulation of diverse chemotherapeutic agents. Acquired somatic mutations in the phylogenetically conserved amino acids of ABCG2 might provide unique insights into its molecular mechanisms of transport. Here, we identify a tumor-derived somatic mutation (Q393K) that occurs in a highly conserved amino acid across mammalian species. This ABCG2 mutant seems incapable of providing ABCG2-mediated drug resistance. This was perplexing because it is localized properly and retained interaction with substrates and nucleotides. Using a conformationally sensitive antibody, we show that this mutant appears "locked" in a non-functional conformation. Structural modeling and molecular dynamics simulations based on ABCG2 cryo-EM structures suggested that the Q393K interacts with the E446 to create a strong salt bridge. The salt bridge is proposed to stabilize the inward-facing conformation, resulting in an impaired transporter that lacks the flexibility to readily change conformation, thereby disrupting the necessary communication between substrate binding and transport.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias , Humanos , Animales , Transportadoras de Casetes de Unión a ATP/metabolismo , Mutación , Resistencia a Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Antineoplásicos/genética , Mamíferos/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoRESUMEN
Cardiovascular diseases are the main cause of death in the world, with ischemic heart disease (i.e., myocardial infarction) and cerebrovascular disease (i.e., stroke) taking the highest toll. Advances in diagnosis and treatment have led to a significant alleviation of ischemic complications, specifically in the realm of pharmacotherapy and interventional devices, while pharmacogenomics has yet to be fully leveraged to improve the burden of disease. Atherothrombotic events might occur earlier or respond worse to treatment in patients with genetic variants of GP IIb/IIIa. Therefore, we aimed to quantitate the involvement of the PlA2 variant in the risk of cerebral stroke events. A systematic search and meta-analysis were performed by pooling the risks of individual studies. A total of 31 studies comprising 5985 stroke patients and 7886 controls were analyzed. A meta-analysis of four studies on hemorrhagic stroke patients showed no association with the PIA2 rs5918(C) polymorphism in both fixed-effect (OR = 0.90 95%CI [0.71; 1.14]; p = 0.398) and random-effect models (OR = 0.86 95%CI [0.62; 1.20]; p-value = 0.386). The power of this analysis was below <30%, indicating a limited ability to detect a true effect. An analysis of the 28 studies on ischemic stroke revealed a significant association with the PIA2 rs5918(C) allele in both fixed-effect (OR = 1.16 95%CI [1.06; 1.27]; p = 0.001) and random-effect models (OR = 1.20 95%CI [1.04; 1.38]; p-value = 0.012), with a power of >80%. The PIA2 allele was associated with an increased risk of ischemic stroke. No association was found with hemorrhagic stroke, most likely due to the small number of available studies, which resulted in a lack of power.
RESUMEN
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
RESUMEN
The nonsense-mediated mRNA decay (NMD) pathway degrades some but not all mRNAs bearing premature termination codons (PTCs). Decades of work have elucidated the molecular mechanisms of NMD. More recently, statistical analyses of large genomic datasets have allowed the importance of known and novel 'rules of NMD' to be tested and combined into methods that accurately predict whether PTC-containing mRNAs are degraded or not. We discuss these genomic approaches and how they can be applied to identify diseases and individuals that may benefit from inhibition or activation of NMD. We also discuss the importance of NMD for gene editing and tumor evolution, and how inhibiting NMD may be an effective strategy to increase the efficacy of cancer immunotherapy.
Asunto(s)
Empalme Alternativo/genética , Enfermedades Genéticas Congénitas/genética , Neoplasias/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Codón sin Sentido/genética , Humanos , ARN Mensajero/genéticaRESUMEN
BACKGROUD: Tripartite motif containing 5α protein is a factor contributing to intracellular defense mechanisms against human immunodeficiency virus-1 (HIV-1) infection. The studies of TRIM5 variants effects on the risk of HIV-1 infection and the clinical course of disease provided inconclusive results in different ethnic groups. The aim of this study was to investigate the influence of TRIM5 variants on susceptibility to HIV-1 infection and clinical parameters among Polish HIV-1-infected patients. MATERIALS & METHODS: In our study, we investigated 301 HIV-1-infected patients and 186 age-matched seronegative controls. Seven variants of the TRIM5 gene (rs7127617, rs3824949, rs3740996, rs11601507, rs10838525, rs11038628, and rs28381981) were genotyped using both sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. RESULTS AND CONCLUSIONS: The frequencies of rs7127617 TT genotype and T allele occurrence were lower in HIV-1-infected subjects compared to controls (0.14 vs. 0.26 for T/T genotype and 0.45 vs. 0.54 for T allele), suggesting their possible protective effect (p = 0.005 and p = 0.007, respectively). Heterozygosity and presence of the T allele at rs3740996 were enriched in controls compared to HIV-1-infected group (0.19 vs. 0.12 for C/T genotype and 0.11 vs. 0.07 for T allele; p = 0.03 and p = 0.02, respectively). Moreover, rs3824949 CC genotype carriers had a lower viral load than patients bearing rs3824949 GG/CG genotypes (4.0 vs. 4.6 log copies/mL; p = 0.049); however, none of the variants affected CD4+ cell count. In conclusion, our data confirm the role of TRIM5 variants in the HIV-1 transmission and the clinical course of HIV-1 infection. The presence of rs7127617 TT genotype and T allele seems to protect against HIV-1 transmission in examined population.
Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Predisposición Genética a la Enfermedad , Polonia , Ubiquitina-Proteína Ligasas/genética , Infecciones por VIH/genética , Genotipo , Proteínas de Motivos Tripartitos/genética , Progresión de la Enfermedad , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Factores de Restricción AntiviralesRESUMEN
INTRODUCTION: Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS: The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS: The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.
Asunto(s)
Transportador 1 de Casete de Unión a ATP , Predisposición Genética a la Enfermedad , Síndrome Metabólico , Polimorfismo de Nucleótido Simple , Humanos , Transportador 1 de Casete de Unión a ATP/genética , Síndrome Metabólico/genética , Niño , Masculino , Femenino , México , Adolescente , Alelos , Genotipo , HDL-Colesterol/sangre , Factores de RiesgoRESUMEN
Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, in this review, we investigate the potential of using genetic mouse models to identify genetic markers that can disrupt hearing thresholds in mice and then target the hearing-enriched orthologues and loci in humans. Currently, little is known about the real prevalence of genes that cause hearing impairment (HI) in Africa. Pre-screening mouse cell lines to identify orthologues of interest has the potential to improve the genetic diagnosis for HI in Africa to a significant percentage, for example, 10-20%. Furthermore, the functionality of a candidate gene derived from mouse screening with heterogeneous genetic backgrounds and multi-omic approaches can shed light on the molecular, genetic heterogeneity and plausible mode of inheritance of a gene in hearing-impaired individuals especially in the absence of large families to investigate.
Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva , Animales , Humanos , Ratones , Pérdida Auditiva/genética , África/epidemiología , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Childhoods in urban or rural environments may differentially affect the risk of neuropsychiatric disorders, possibly through memory processing and neural response to emotional stimuli. Genetic factors may not only influence individuals' choices of residence but also modulate how the living environment affects responses to episodic memory. METHODS: We investigated the effects of childhood urbanicity on episodic memory in 410 adults (discovery sample) and 72 adults (replication sample) with comparable socioeconomic statuses in Beijing, China, distinguishing between those with rural backgrounds (resided in rural areas before age 12 and relocated to urban areas at or after age 12) and urban backgrounds (resided in cities before age 12). We examined the effect of childhood urbanicity on brain function across encoding and retrieval sessions using an fMRI episodic memory paradigm involving the processing of neutral or aversive pictures. Moreover, genetic association analyses were conducted to understand the potential genetic underpinnings that might contribute to memory processing and neural mechanisms influenced by early-life urban or rural environments. RESULTS: Episodic memory retrieval accuracy for more difficult neutral stimuli was similar between those with urban and rural childhoods, whereas aversive stimuli elicited higher retrieval accuracy in the urban group (P = 0.023). For aversive stimuli, subjects with urban childhood had relatively decreased engagement of the striatum at encoding and decreased engagement of the hippocampus at retrieval. This more efficient striatal encoding of aversive stimuli in those with urban childhoods was associated with common variation in neurotrophic tyrosine kinase receptor type 2 (NTRK2) (right striatum: P = 1.58×10-6). These findings were confirmed in the replication sample. CONCLUSIONS: We suggest that this differential striatal processing of aversive stimuli observed in individuals with urban or rural childhoods may represent mechanisms by which childhood urbanicity may affect brain circuits, heightening behavioral responses to negative stressors associated with urban environments. NTRK2-associated neural processes in the striatum may play a role in these processes.
Asunto(s)
Memoria Episódica , Adulto , Niño , Humanos , Mapeo Encefálico , Emociones/fisiología , Hipocampo , Imagen por Resonancia Magnética , Receptor trkBRESUMEN
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias de Cabeza y Cuello , Recurrencia Local de Neoplasia , Polimorfismo de Nucleótido Simple , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Masculino , Femenino , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Homeostasis del Telómero/genética , Telómero/genética , Anciano , Estudio de Asociación del Genoma Completo , Genotipo , Factores de Riesgo , Pronóstico , AdultoRESUMEN
BACKGROUND: Aldehyde dehydrogenase 2 (ALDH2) is critical for alcohol metabolism by converting acetaldehyde to acetic acid. In East Asian descendants, an inactive genetic variant in ALDH2, rs671, triggers an alcohol flushing response due to acetaldehyde accumulation. As alcohol flushing is not exclusive to those of East Asian descent, we questioned whether additional ALDH2 genetic variants can drive facial flushing and inefficient acetaldehyde metabolism using human testing and biochemical assays. METHODS: After IRB approval, human subjects were given an alcohol challenge (0.25 g/kg) while quantifying acetaldehyde levels and the physiological response (heart rate and skin temperature) to alcohol. Further, by employing biochemical techniques including human purified ALDH2 proteins and transiently transfected NIH 3T3 cells, we characterized two newly identified ALDH2 variants for ALDH2 enzymatic activity, ALDH2 dimer/tetramer formation, and reactive oxygen species production after alcohol treatment. RESULTS: Humans heterozygous for rs747096195 (R101G) or rs190764869 (R114W) had facial flushing and a 2-fold increase in acetaldehyde levels, while rs671 (E504K) had facial flushing and a 6-fold increase in acetaldehyde levels relative to wild type ALDH2 carriers. In vitro studies with recombinant R101G and R114W ALDH2 enzyme showed a reduced efficiency in acetaldehyde metabolism that is unique when compared to E504K or wild-type ALDH2. The effect is caused by a lack of functional dimer/tetramer formation for R101G and decreased Vmax for both R101G and R114W. Transiently transfected NIH-3T3 cells with R101G and R114W also had a reduced enzymatic activity by ~ 50% relative to transfected wild-type ALDH2 and when subjected to alcohol, the R101G and R114W variants had a 2-3-fold increase in reactive oxygen species formation with respect to wild type ALDH2. CONCLUSIONS: We identified two additional ALDH2 variants in humans causing facial flushing and acetaldehyde accumulation after alcohol consumption. As alcohol use is associated with a several-fold higher risk for esophageal cancer for the E504K variant, the methodology developed here to characterize ALDH2 genetic variant response to alcohol can lead the way precision medicine strategies to further understand the interplay of alcohol consumption, ALDH2 genetics, and cancer.
Asunto(s)
Acetaldehído , Aldehído Deshidrogenasa Mitocondrial , Etanol , Variación Genética , Acetaldehído/metabolismo , Humanos , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Animales , Ratones , Etanol/metabolismo , Células 3T3 NIH , Especies Reactivas de Oxígeno/metabolismo , Masculino , Adulto , Femenino , Rubor/metabolismo , Rubor/genéticaRESUMEN
BACKGROUND: Inherited variations in DNA double-strand break (DSB) repair pathway are known to influence ovarian cancer occurrence, progression and treatment response. Despite its significance, survival-associated genetic variants within the DSB pathway remain underexplored. METHODS: In the present study, we performed a two-phase analysis of 19,290 single-nucleotide polymorphisms (SNPs) in 199 genes in the DSB repair pathway from a genome-wide association study (GWAS) dataset and explored their associations with overall survival (OS) in 1039 Han Chinese epithelial ovarian carcinoma (EOC) patients. After utilizing multivariate Cox regression analysis with bayesian false-discovery probability for multiple test correction, significant genetic variations were identified and subsequently underwent functional prediction and validation. RESULTS: We discovered a significant association between poor overall survival and the functional variant GEN1 rs56070363 C > T (CT + TT vs. TT, adjusted hazard ratio (HR) = 2.50, P < 0.001). And the impact of GEN1 rs56070363 C > T on survival was attributed to its reduced binding affinity to hsa-miR-1287-5p and the resultant upregulation of GEN1 mRNA expression. Overexpression of GEN1 aggregated EOC cell proliferation, invasion and migration presumably by influencing the expression of immune inhibitory factors, thereby elevating the proportion of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and then constructing an immunosuppressive tumor microenvironment. CONCLUSIONS: In conclusion, GEN1 rs56070363 variant could serve as a potential predictive biomarker and chemotherapeutic target for improving the survival of EOC patients.
Asunto(s)
Carcinoma Epitelial de Ovario , Resolvasas de Unión Holliday , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Persona de Mediana Edad , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/mortalidad , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , China , Pueblos del Este de Asia/genética , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Estimación de Kaplan-Meier , MicroARNs/genética , Invasividad Neoplásica , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Pronóstico , Análisis de Supervivencia , Resolvasas de Unión Holliday/genéticaRESUMEN
Reversible protein phosphorylation is a ubiquitous phenomenon essential for eukaryotic cellular processes. Recent advancements in research about neurodevelopmental disorders have prompted investigations into the intricate relationship between protein phosphatases, particularly phosphoprotein phosphatases (PPPs), and neurodevelopment. Notably, variants in 10 coding genes spanning four PPP family members have been implicated in neurodevelopmental disorders. Here, we provide a comprehensive overview of the clinical phenotypes, genotypes, and pathogenic mechanisms observed in affected patients. Our analysis reveals challenges in subsequent statistical analyses due to inconsistent clinical phenotypic descriptions and a lack of large multicenter studies, hampering analysis about genotype-phenotype correlations. The scarcity of follow-up data poses a significant obstacle to prognostic counseling for nearly all rare diseases. Presently, symptomatic treatment strategies are employed for patients with variants, as definitive cures remain elusive. Future research may explore protein phosphatase regulators as potential therapeutic targets. Furthermore, it is imperative not to overlook other members of the protein phosphatase family or coding genes with undiscovered variants. Insights gleaned from the temporal and spatial distribution of proteins, along with observations from animal model phenotypes, may provide valuable directions for uncovering novel pathogenic genes.
RESUMEN
Marfan syndrome (MFS) is a complex connective tissue disorder characterized by considerable clinical variability. The diagnosis of MFS is based on the Ghent criteria, which require the presence of both clinical and genetic features. MFS is primarily caused by pathogenic alterations in FBN1, which encodes the fibrillin-1 protein. Fibrillin-1 comprises multiple domains rich in cysteine residues, with disulfide bonds formed between these residues. It has long been recognized that variants that alter or introduce cysteine residues damage protein function, leading to the development of MFS. In this study, we report a cysteine-introducing variant: FBN1 variant, c.6724C>T (p.[Arg2242Cys]). We have observed this variant in several individuals without MFS, challenging our previous understanding of the underlying mechanism of MFS. This finding emphasizes the importance of revisiting and reevaluating our current knowledge in light of new and unexpected observations. Moreover, our study highlights the significance of incorporating local and national data on allele frequencies, as well as employing multidisciplinary phenotyping approaches, in the classification of genetic variants. By considering a wide range of information, we can enhance the accuracy and reliability of variant classification, ultimately improving the diagnosis and management of individuals with genetic disorders like MFS.
Asunto(s)
Fibrilina-1 , Síndrome de Marfan , Humanos , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Síndrome de Marfan/diagnóstico , Masculino , Femenino , Adulto , Fenotipo , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Linaje , Variación Genética , Mutación/genética , Alelos , AdipoquinasRESUMEN
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Humanos , Cadenas Pesadas de Miosina/genética , Enfermedades Musculares/genética , Músculo Esquelético , Cardiomiopatías/genética , Corazón , Mutación , Fenotipo , Miosinas Cardíacas/genéticaRESUMEN
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Asunto(s)
Neoplasias , Telomerasa , Humanos , Reproducibilidad de los Resultados , Telómero/genética , Acortamiento del Telómero , Senescencia Celular , Inestabilidad Genómica , Telomerasa/genética , Neoplasias/genética , Neoplasias/patologíaRESUMEN
BACKGROUND: Along with environmental components, genetic factors play an essential role in the pathophysiology and progression of acute myocardial infarction (AMI). There is limited and conflicting data on the influence of the AGT M235T genetic variant on coronary atherosclerosis and death in AMI patients. METHODS: We carried out a prospective cohort study among 504 Vietnamese AMI patients selected between January 2020 and May 2021. All patients underwent invasive coronary angiography, had AGT M235T genetic variant genotyped using the polymerase chain reaction method, and were followed up for 12-month all-cause mortality. RESULTS: The proportions of the MM, MT, and TT genotypes were 0.4%, 20.8%, and 78.8%, respectively. There was no significant difference between the TT genotype and the MM + MT genotype groups regarding the position and number of stenosed coronary artery branches and the Gensini score. The AGT M235T genetic variant did not affect 12-month mortality (hazard ratio of TT vs. MM + MT: 1.185; 95% confidence interval: 0.596-2.354; P = 0.629). Subgroup analyses by age, sex, hypertension, diabetes mellitus, dyslipidemia, obesity, smoking, and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker therapy also did not reveal an association between the AGT M235T variant and all-cause mortality. CONCLUSION: In summary, the AGT M235T genetic variant was not found to be associated with coronary atherosclerosis characteristics and 12-month mortality in Vietnamese patients with AMI. Further multicenter studies with larger sample sizes and extended follow-up periods are needed to investigate this issue.
Asunto(s)
Angiotensinógeno , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Infarto del Miocardio/genética , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/genética , Pronóstico , Anciano , Angiotensinógeno/genética , Estudios Prospectivos , Genotipo , Predisposición Genética a la Enfermedad , Vietnam , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Angiografía CoronariaRESUMEN
BACKGROUND AND AIM: The aim of this study was to investigate the comprehensive genetic effects of exploratory variants of LYPLAL1, GCKR, HSD17B13, TRIB1, APOC3, MBOAT7, and PARVB on pediatric nonalcoholic fatty liver disease in addition to the previously reported variants of TM6SF2, PNPLA3, and SAMM50 in Korean children. METHODS: A prospective case-control study was conducted involving 309 patients diagnosed using ultrasound and 339 controls. Anthropometric measurements, liver function tests, and metabolic marker analysis were conducted, and fibrosis scores were calculated. Transient elastography was performed in 69 some patients with nonalcoholic fatty liver disease. TaqMan allelic discrimination assays were used for genotyping. The genetic risk scores were calculated using significant variants, namely, HSD17B13, PARVB, PNPLA3, SAMM50, and TM6SF2, to evaluate the additive effect. RESULTS: Risk allele carriers of the PARVB variant showed significantly higher levels of aminotransferases, gamma-glutamyl transferase, alkaline phosphatase, pediatric nonalcoholic fatty liver disease fibrosis score, and aspartate aminotransferase/platelet ratio index. Individuals with a homozygous variant of HSD17B13 showed significantly lower levels of aminotransferase, gamma-glutamyl transferase, liver stiffness measurement, and aspartate aminotransferase/platelet ratio index than those with other genotypes. These parameters did not significantly differ among other variants of LYPLAL1, GCKR, TRIB1, APOC3, and MBOAT7. The genetic risk scores was identified as an independent risk factor for nonalcoholic fatty liver disease and had a positive association with severity. CONCLUSION: HSD17B13 has protective effects on the severity of pediatric nonalcoholic fatty liver disease. Variants of HSD17B13, PARVB, PNPLA3, SAMM50, and TM6SF2 had an additive effect on nonalcoholic fatty liver disease.