Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34214465

RESUMEN

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Asunto(s)
Bacteriófago T7/genética , ADN Viral/química , Periplasma/química , Proteínas del Núcleo Viral/química , Biología Computacional , Microscopía por Crioelectrón , Citoplasma/química , ADN Viral/metabolismo , Membrana Dobles de Lípidos/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas del Núcleo Viral/metabolismo
2.
Toxicol Appl Pharmacol ; 448: 116092, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654276

RESUMEN

Gypenosides are major bioactive ingredients of G. pentaphyllum. In our previous study, we found that gypenosides had neuroprotective effects against hypoxia-induced injury. In the current study, we focused on the protective effects of gypenoside-14 (GP-14), which is one of the newly identified bioactive components, on neuronal injury caused by severe hypoxia (0.3% O2). The results showed that GP-14 pretreatment alleviated the cell viability damage and apoptosis induced by hypoxia in PC12 cells. Moreover, GP-14 pretreatment also attenuated primary neuron injuries under hypoxic conditions. Additionally, GP-14 pretreatment significantly ameliorated neuronal damage in the hippocampal region induced by high-altitude cerebral edema (HACE). At the molecular level, GP-14 pretreatment reversed the decreased activities of the AKT and ERK signaling pathways caused by hypoxia in PC12 cells and primary neurons. To comprehensively explore the possible mechanisms, transcriptome sequencing was conducted, and these results indicated that GP-14 could alter the transcriptional profiles of primary neuron. Taken together, our results suggest that GP-14 acts as a neuroprotective agent to protect against neuronal damage induced by severe hypoxia and it is a promising compound for the development of neuroprotective drugs.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neuronas , Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Perfilación de la Expresión Génica , Gynostemma/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
3.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631068

RESUMEN

Neuroinflammation is a common pathogenetic sign of depression and is closely linked to the development of depression. Many clinical anti-inflammatory drugs act as antidepressants by reducing the neuroinflammatory response. Previous research found that gypenosides and their bioactive compound gypenoside-14 (GP-14) had neuroprotective effects against hypoxia-induced injury and reduced neuroinflammation-related high-altitude cerebral edema. Here we investigated the effects of GP-14 on the lipopolysaccharide (LPS)-induced depression-like behavior model. LPS (0.5 mg/kg) was injected into mice intraperitoneally for 7 consecutive days to induce depression-like behavior, which is considered a model for the exacerbation of depression. GP-14 in the amount of 100 mg/kg was simultaneously administered by gavage for 7 days. In the LPS-induced depression model, GP-14 not only attenuated depression-like behavior but also improved the anxiety-like behavior of the mice. Additionally, GP-14 treatment mitigated learning and cognitive decline in depressed mice. ELISA and immunofluorescence staining results revealed that GP-14 inhibited the upregulation of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), and suppressed the activation of astrocytes induced with LPS, indicating its potent anti-inflammatory effect. GP-14 pretreatment in C8 cells and primary astrocytes can inhibit the activation of the NF-κB signaling pathway and downregulate the levels of pro-inflammatory factors. In summary, our findings showed that GP-14 had significant anti-inflammation and anti-depression properties; thus, GP-14 could be a promising lead compound for treating depression.

4.
Microorganisms ; 10(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35336080

RESUMEN

Bacterial viruses (or bacteriophages) have developed formidable ways to deliver their genetic information inside bacteria, overcoming the complexity of the bacterial-cell envelope. In short-tailed phages of the Podoviridae superfamily, genome ejection is mediated by a set of mysterious internal virion proteins, also called ejection or pilot proteins, which are required for infectivity. The ejection proteins are challenging to study due to their plastic structures and transient assembly and have remained less characterized than classical components such as the phage coat protein or terminase subunit. However, a spate of recent cryo-EM structures has elucidated key features underscoring these proteins' assembly and conformational gymnastics that accompany their expulsion from the virion head through the portal protein channel into the host. In this review, we will use a phage-T7-centric approach to critically review the status of the literature on ejection proteins, decipher the conformational changes of T7 ejection proteins in the pre- and post-ejection conformation, and predict the conservation of these proteins in other Podoviridae. The challenge is to relate the structure of the ejection proteins to the mechanisms of genome ejection, which are exceedingly complex and use the host's machinery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA