Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 104(2): 725-739, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31822980

RESUMEN

The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.e., hVEGF-165, hPDGF-B, and hSDF-1, in biomedical settings. As a case study, combinations of two expression vectors (pOpt and pBC1) and two C. reinhardtii strains (UVM4 and UVM11) were compared with respect to hVEGF-165 transgene expression by determination of steady-state levels of transgenic transcripts and immunological detection of recombinant proteins produced and secreted by the generated strains. The results revealed the combination of the UVM11 strain with the pBC1 vector to be the most efficient one for high-level hVEGF-165 production. To assess the robustness of this finding, the selected combination was used to create hPDGF-B and hSDF-1 transgenic strains for optimized recombinant protein expression. Furthermore, biological activity and functionality of algal-produced recombinant pro-angiogenic growth factors were assessed by receptor phosphorylation and in vitro angiogenesis assays. The results obtained revealed a potentiating effect in the combinatorial application of transgenic strains expressing either of the three growth factors on endothelial cell tube formation ability, and thus support the idea of using transgenic algae expressing pro-angiogenic growth factors in wound healing approaches.


Asunto(s)
Quimiocina CXCL12/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Proteínas Recombinantes/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inductores de la Angiogénesis , Quimiocina CXCL12/genética , Células Endoteliales/efectos de los fármacos , Expresión Génica , Perfilación de la Expresión Génica , Vectores Genéticos , Proteoma/análisis , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Recombinantes/genética , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/genética
2.
Adv Exp Med Biol ; 1078: 245-269, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357627

RESUMEN

Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Medicina Regenerativa , Ingeniería de Tejidos , Materiales Biocompatibles , Humanos
3.
AAPS PharmSciTech ; 18(1): 34-41, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27502406

RESUMEN

Controlled delivery of signaling factors could be a great approach in the tissue engineering field. Nano-niosomal drug delivery systems offer numerous advantages for this purpose. The present study reports the formulation and evaluation of a growth factor (GF)-loaded nano-niosome-hydrogel composite for GF delivery to modulate cell behavior. Niosomes were prepared, using span 60 surfactant with cholesterol (CH) in diethyl ether solvent, by reverse-phase evaporation technique. Basic fibroblast growth factor (bFGF) and bovine serum albumin (BSA) were loaded simultaneously and the final suspension was embedded into agarose hydrogel. Particle size, vesicle morphology, protein entrapment efficiency (EE), and release profile were measured by dynamic light scattering (DLS) nanoparticle size analyzer, transmission electron microscopy (TEM) and NanoDrop spectrophotometry methods, respectively. The release and performance of bFGF were revealed via human umbilical vein endothelial cell (HUVEC) proliferation using microscopy imaging and MTT assay. Nano-niosomes had an average particle size of 232 nm and had encapsulated 58% of the total proteins present in the suspension. bFGF-BSA-loaded niosomal gel considerably enhanced HUVEC proliferation. This GF-loaded niosomal hydrogel could be a potent material in many biomedical applications including the induction of angiogenesis in tissue engineering.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Liposomas/química , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Química Farmacéutica/métodos , Colesterol/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Factores de Crecimiento de Fibroblastos/administración & dosificación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administración & dosificación , Liposomas/administración & dosificación , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Tensoactivos/química
4.
Adv Exp Med Biol ; 881: 95-110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545746

RESUMEN

Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non-specific interaction of morphogenic peptides with lipid bilayer of the cell membrane, interaction of the peptide with cell surface receptors that do not specifically induce osteogenesis leading to less-than-optimal osteogenic activity of the peptide, and less-than-optimal interaction of the peptide with osteogenic receptors on the cell surface. Covalent attachment or physical interaction with the tissue engineered matrix can also alter the bioactivity of morphogenic peptides and lead to a lower extent of osteogenesis and bone formation. This chapter reviews advances in discovery of morphogenic peptide, their structural characterization, and challenges in using morphogenic peptides in clinical applications as growth factors in tissue engineered devices for regeneration of load bearing tissues.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Osteogénesis/fisiología , Péptidos/química , Regeneración/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/farmacología , Humanos , Datos de Secuencia Molecular , Osteogénesis/efectos de los fármacos , Péptidos/farmacología , Regeneración/efectos de los fármacos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Soporte de Peso
5.
Front Bioeng Biotechnol ; 12: 1308161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433822

RESUMEN

Background: Osteoadsorptive fluorogenic sentinel 3 (OFS-3) is a recently described compound that contains a bone-targeting bisphosphonate (BP) and cathepsin K (Ctsk)-triggered fluorescence signal. A prior study in a murine Achilles repair model demonstrated its effectiveness at targeting the site of tendon-to-bone repair, but the intrinsic effect of this novel bisphosphonate chaperone on tendon-to-bone healing has not been previously explored. We hypothesized that application of this bisphosphonate-fluorophore cargo conjugate would not affect the biomechanical properties or histologic appearance of tendon-bone repairs. Materials and Methods: Right hindlimb Achilles tendon-to-bone repair was performed on 12-week old male mice. Animals were divided into 2 groups of 18 each: 1) Achilles repair with OFS-3 applied directly to the repair site prior to closure, and 2) Achilles repair with saline applied prior to closure. Repaired hindlimbs from 12 animals per group were harvested at 6 weeks for biomechanical analysis with a custom 3D-printed jig. At 4 and 6 weeks, repaired hindlimbs from the remaining animals were assessed histologically using H&E, immunohistochemistry (IHC) staining for the presence of Ctsk, and second harmonic generation (SHG) imaging to evaluate collagen fibers. Results: At 6 weeks, there was no significant difference in failure load, stiffness, toughness, or displacement to failure between repaired hindlimbs that received OFS-3 versus saline. There was no difference in tissue healing on H&E or Ctsk staining on immunohistochemistry between animals that received OFS-3 versus saline. Finally, second harmonic generation imaging demonstrated no difference in collagen fiber parameters between the two groups. Conclusion: OFS-3 did not significantly affect the biomechanical properties or histologic appearance of murine Achilles tendon-to-bone repairs. This study demonstrates that OFS-3 can target the site of tendon-to-bone repair without causing intrinsic negative effects on healing. Further development of this drug delivery platform to target growth factors to the site of tendon-bone repair is warranted.

6.
Bioact Mater ; 40: 417-429, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39022184

RESUMEN

In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factors from such constructs have the potential to improve re-epithelialization and stromal remodeling. However, challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an in situ-forming bio-orthogonally crosslinked hydrogel containing growth factors tethered via photocleavable linkages (PC-HACol hydrogel) was developed to accelerate corneal regeneration. Epidermal growth factor (EGF) was conjugated to the hydrogel backbone through photo-cleavable (PC) spacer arms and was released when exposed to mild intensity ultraviolet (UV) light (2-5 mW/cm2, 365 nm). The PC-HACol hydrogel rapidly gelled within a few minutes when applied to corneal defects, with excellent transparency and biocompatibility. After subsequent exposure to UV irradiation, the hydrogel promoted the proliferation and migration of corneal epithelial cells in vitro. The rate of re-epithelialization was positively correlated to the frequency of irradiation, verified through ex vivo rabbit cornea organ culture studies. In an in vivo rat corneal wound healing study, the PC-HACol hydrogel exposed to UV light significantly promoted re-epithelialization, the remodeling of stromal layers, and exhibited significant anti-scarring effects, with minimal α-SMA and robust ALDH3A1 expression. Normal differentiation of the regenerated epithelia after healing was evaluated by expression of the corneal epithelial biomarker, CK12. The remodeled cornea exhibited full recovery of corneal thickness and layer number without hyperplasia of the epithelium.

7.
Tissue Eng Part A ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874527

RESUMEN

Conventionally, for cartilage tissue engineering applications, transforming growth factor beta (TGF-ß) is administered at doses that are several orders of magnitude higher than those present during native cartilage development. While these doses accelerate extracellular matrix (ECM) biosynthesis, they may also contribute to features detrimental to hyaline cartilage function, including tissue swelling, type I collagen (COL-I) deposition, cellular hypertrophy, and cellular hyperplasia. In contrast, during native cartilage development, chondrocytes are exposed to moderate TGF-ß levels, which serve to promote strong biosynthetic enhancements while mitigating risks of pathology associated with TGF-ß excesses. Here, we examine the hypothesis that physiologic doses of TGF-ß can yield neocartilage with a more hyaline cartilage-like composition and structure relative to conventionally administered supraphysiologic doses. This hypothesis was examined on a model system of reduced-size constructs (∅2 × 2 mm or ∅3 × 2 mm) comprised of bovine chondrocytes encapsulated in agarose, which exhibit mitigated TGF-ß spatial gradients allowing for an evaluation of the intrinsic effect of TGF-ß doses on tissue development. Reduced-size (∅2 × 2 mm or ∅3 × 2 mm) and conventional-size constructs (∅4-∅6 mm × 2 mm) were subjected to a range of physiologic (0.1, 0.3, 1 ng/mL) and supraphysiologic (3, 10 ng/mL) TGF-ß doses. At day 56, the physiologic 0.3 ng/mL dose yielded reduced-size constructs with native cartilage-matched Young's modulus (EY) (630 ± 58 kPa) and sulfated glycosaminoglycan (sGAG) content (5.9 ± 0.6%) while significantly increasing the sGAG-to-collagen ratio, leading to significantly reduced tissue swelling relative to constructs exposed to the supraphysiologic 10 ng/mL TGF-ß dose. Furthermore, reduced-size constructs exposed to the 0.3 ng/mL dose exhibited a significant reduction in fibrocartilage-associated COL-I and a 77% reduction in the fraction of chondrocytes present in a clustered morphology, relative to the supraphysiologic 10 ng/mL dose (p < 0.001). EY was significantly lower for conventional-size constructs exposed to physiologic doses due to TGF-ß transport limitations in these larger tissues (p < 0.001). Overall, physiologic TGF-ß appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating features detrimental to hyaline cartilage function. While reduced-size constructs are not suitable for the repair of clinical-size cartilage lesions, insights from this work can inform TGF-ß dosing requirements for emerging scaffold release or nutrient channel delivery platforms capable of achieving uniform delivery of physiologic TGF-ß doses to larger constructs required for clinical cartilage repair.

8.
Gels ; 9(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37232969

RESUMEN

Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.

9.
Mater Today Bio ; 19: 100551, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36747582

RESUMEN

Given the dynamic nature of engineered vascular networks within biofabricated tissue analogues, it is instrumental to have control over the constantly evolving biochemical cues within synthetic matrices throughout tissue remodeling. Incorporation of pro-angiogenic vascular endothelial growth factor (VEGF165) specific aptamers into cell-instructive polymer networks is shown to be pivotal for spatiotemporally controlling the local bioactivity of VEGF that selectively elicit specific cell responses. To harness this effect and quantitatively unravel its spatial resolution, herein, bicomponent micropatterns consisting of VEGF165 specific aptamer-functionalized gelatin methacryloyl (GelMA) (aptamer regions) overlaid with pristine GelMA regions using visible-light photoinitiators (Ru/SPS) were fabricated via two-step photopatterning approach. For the 3D co-culture study, human umbilical vein-derived endothelial cells and mesenchymal stromal cells were used as model cell types. Bicomponent micropatterns with spatially defined spacings (300/500/800 â€‹µm) displayed high aptamer retention, aptamer-fluorescent complementary sequence (CSF) molecular recognition and VEGF sequestration localized within patterned aptamer regions. Stiffness gradient at the interface of aptamer and GelMA regions was observed with high modulus in aptamer region followed by low stiffness GelMA regions. Leveraging aptamer-tethered VEGF's dynamic affinity interactions with CS that upon hybridization facilitates triggered VEGF release, co-culture studies revealed unique characteristics of aptamer-tethered VEGF to form spatially defined luminal vascular networks covered with filopodia-like structures in vitro (spatial control) and highlights their ability to control network properties including orientation over time using CS as an external trigger (temporal control). Moreover, the comparison of single and double exposed regions within micropatterns revealed differences in cell behavior among both regions. Specifically, the localized aptamer-tethered VEGF within single exposed aptamer regions exhibited higher cellular alignment within the micropatterns till d5 of culture. Taken together, this study highlights the potential of photopatterned aptamer-tethered VEGF to spatiotemporally regulate vascular morphogenesis as a tool for controlling vascular remodeling in situ.

10.
Regen Biomater ; 9: rbac029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615568

RESUMEN

Renal ischemia-reperfusion (I/R) injury is one of the major causes of acute kidney injury. However, there is still no effective treatment for this disease. Basic fibroblast growth factor (bFGF) has been reported to be beneficial for recovery from ischemic diseases. It is vital to increase the local concentration and reduce the diffusion of bFGF in vivo for renal I/R injury therapy. A targeted growth factor delivery system that responds to specific biological signals in the regenerative environment to guide release has been highlighted in tissue repair. In the present study, a specific peptide was fused with bFGF and called bFGF-kidney injury targeting (KIT-bFGF), and this compound specifically targeted kidney injury molecule-1 both in hypoxic renal HK-2 cells in vitro and ischemic kidneys in vivo after intravenous injection. When administered to rat models of renal I/R injury, KIT-bFGF attenuated renal tubule damage and fibrosis, and promoted functional recovery compared to the effects of native bFGF and the control. We also investigated the mechanism by which KIT-bFGF activated the ERK1/2 and Akt signaling pathways to significantly reduce apoptosis and protect against ischemic injury in the kidney. These results demonstrated that targeted delivery of KIT-bFGF could be an effective strategy for the treatment of renal I/R injury.

11.
3 Biotech ; 12(11): 316, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276437

RESUMEN

Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.

12.
Nanomedicine (Lond) ; 17(7): 477-494, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35220756

RESUMEN

Peripheral nerve injuries are a major source of disabilities, and treatment of long nerve gap autografts is the gold standard. However, due to poor availability and donor-site morbidity, research is directed towards the development of regenerative strategies based on the use of artificial nerve guidance conduits (NGCs). Several properties and characteristics of the NGCs can be fine-tuned, such as the architecture of the conduit, the surface topography and the addition of bioactive molecules and cells to speed up nerve regeneration. In this review, US FDA-approved NGCs are described. The recent works, in which polymeric, magnetic, silica-based and lipidic NPs are employed to introduce growth factors (GFs) to NGCs, are overviewed and discussed in depth herein.


Nerves present in the extremities of the body are often injured, and this can lead to disabilities. To treat this problem, nerve sections from other body parts can be used, but the main disadvantage of this technique is poor availability and donor-site morbidity. To tackle these difficulties, research is focused on the development of artificial nerves, which are known as nerve guidance conduits (NGCs). This review article focuses on advances in this field, which is mainly related to the optimization of the material for conduit synthesis, on architecture and topography, and on how the functionalization of the NGCs with bioactive molecules can support nerve regeneration at the injured site. Currently commercialized NGCs are presented, and an in-depth discussion on strategies comprising neurotrophic factors administered alone, or included in the NGCs using nanoparticles, is also provided.


Asunto(s)
Nanopartículas , Traumatismos de los Nervios Periféricos , Humanos , Factores de Crecimiento Nervioso , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Nervios Periféricos/fisiología
13.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808102

RESUMEN

Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide-drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.

14.
Front Cell Dev Biol ; 10: 856261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433700

RESUMEN

This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2ß1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.

15.
Biomater Adv ; 142: 213166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36306555

RESUMEN

Chronic skin wounds place a high burden on patients and health care systems. The use of angiogenic and mitogenic growth factors can facilitate the healing but growth factors are quickly inactivated by the wound environment if added exogenously. Here, free-standing multilayer films (FSF) are fabricated from chitosan and alginate as opposing polyelectrolytes in an alternating manner using layer-by-layer technique. One hundred bilayers form an about 450 µm thick, detachable free-standing film that is subsequently crosslinked by either ethyl (dimethylaminopropyl) carbodiimide combined with N-hydroxysuccinimide (E-FSF) or genipin (G-FSF). The characterization of swelling, oxygen permeability and crosslinking density shows reduced swelling and oxygen permeability for both crosslinked films compared to non-crosslinked films (N-FSF). Loading of fibroblast growth factor 2 (FGF2) into the films results in a sustained release from crosslinked FSF in comparison to non-crosslinked FSF. Biocompatibility studies in vitro with human dermal fibroblasts cultured underneath the films demonstrate increased cell growth and cell migration for all films with and without FGF2. Especially G-FSF loaded with FGF2 greatly increases cell proliferation and migration. In vivo biocompatibility studies by subcutaneous implantation in mice show that E-FSF causes an inflammatory tissue response that is absent in the case of G-FSF. N-FSF also represents a biocompatible film but shows early degradation. All FSF possess antibacterial properties against gram+ and gram- bacteria demonstrated by an agar diffusion disc assay. In summary, FSF made of alginate and chitosan crosslinked with genipin can act as a reservoir for the sustained release of FGF2, possessing high biocompatibility in vitro and in vivo. Moreover, G-FSF promotes growth and migration of human dermal fibroblasts and has antibacterial properties, which makes it an interesting candidate for bioactive wound.


Asunto(s)
Quitosano , Humanos , Ratones , Animales , Factor 2 de Crecimiento de Fibroblastos , Preparaciones de Acción Retardada , Vendajes/microbiología , Alginatos/farmacología , Antibacterianos/farmacología , Oxígeno
16.
Gene ; 769: 145217, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039540

RESUMEN

Bone morphogenetic protein 2 (BMP2)-induced bone regeneration is most efficacious when a carrier can deliver the growth factor into the defect site while minimizing off-target effects. The control of BMP2 release by such carriers is proving one of the most critical aspects of BMP2 therapy. Thus, increasing numbers of biomaterials are being developed to satisfy the simultaneous need for sustained release, reduced rates of degradation and enhanced activity of the growth factor. Here we report on a biomimetic scaffold consisting of bovine collagen type I, bone granules (Intergraft™), and heparan sulfate with increased affinity for BMP2 (HS3). The HS3 and collagen were complexed and then crosslinked via a simple dehydrothermal method. When loaded with a clinically relevant amount of BMP2 (1.25 mg/cc), the HS3-functionalised scaffolds were able to retain up to 58% of the initial amount of BMP2 over 27 days, approximately 3-fold higher than scaffolds without HS3. The bioactivity of the retained BMP2 was confirmed by gene expression in myoblast cells (C2C12) cultured on the scaffolds under osteogenic stimulation. Together these data demonstrate the efficacy of HS3 as a material to improve the performance collagen/bone granule-based scaffolds.


Asunto(s)
Biomimética , Proteína Morfogenética Ósea 2/administración & dosificación , Huesos/metabolismo , Colágeno Tipo I/metabolismo , Heparitina Sulfato/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Bovinos , Línea Celular , Ratones , Andamios del Tejido
17.
Mater Today Bio ; 10: 100098, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33763641

RESUMEN

Collagen hydrogels are among â€‹the most well-studied platforms for drug delivery and in situ tissue engineering, thanks to their low cost, low immunogenicity, versatility, biocompatibility, and similarity to the natural extracellular matrix (ECM). Despite collagen being largely responsible for the tensile properties of native connective tissues, collagen hydrogels have relatively low mechanical properties in the absence of covalent cross-linking. This is particularly problematic when attempting to regenerate stiffer and stronger native tissues such as bone. Furthermore, in contrast to hydrogels based on ECM proteins such as fibronectin, collagen hydrogels do not have any growth factor (GF)-specific binding sites and often cannot sequester physiological (small) amounts of the protein. GF binding and in situ presentation are properties that can aid significantly in the tissue regeneration process by dictating cell fate without causing adverse effects such as malignant tumorigenic tissue growth. To alleviate these issues, researchers have developed several strategies to increase the mechanical properties of collagen hydrogels using physical or chemical modifications. This can expand the applicability of collagen hydrogels to tissues subject to a continuous load. GF delivery has also been explored, mathematically and experimentally, through the development of direct loading, chemical cross-linking, electrostatic interaction, and other carrier systems. This comprehensive article explores the ways in which these parameters, mechanical properties and GF delivery, have been optimized in collagen hydrogel systems â€‹and examines their in vitro or in vivo biological effect. This article can, therefore, be a useful tool to streamline future studies in the field, by pointing researchers into the appropriate direction according to their collagen hydrogel design requirements.

18.
J Biomed Mater Res A ; 109(12): 2545-2555, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34173706

RESUMEN

Bone repair in elderly mice has been shown to be improved or negatively impacted by supplementing the highly osteogenic bone morphogenetic protein-2 (BMP-2) with fibroblast growth factor-2 (FGF-2). To better predict the outcome of FGF-2 supplementation, we investigated whether endogenous levels of FGF-2 play a role in optimal dosing of FGF-2 for augmenting BMP-2 activity in elderly mice. In vivo calvarial bone defect studies in Fgf2 knockout mice with wildtype controls were conducted with the growth factors delivered in a highly localized manner from a biomimetic calcium phosphate/polyelectrolyte multilayer coating applied to a bone graft substitute. Endogenous FGF-2 levels were measured in old mice versus young and found to decrease with age. Optimal dosing for improving bone defect repair correlated with levels of endogenous FGF-2, with a larger dose of FGF-2 required to have a positive effect on bone healing in the Fgf2 knockout mice. The same dose in wildtype old mice, with higher levels of FGF-2, promoted chondrogenesis and increased osteoclast activity. The results suggest a personalized medicine approach, based on a knowledge of endogenous levels of FGF-2, should guide FGF-2 supplementation in order to avoid provoking excessive bone resorption and cartilage formation, both of which inhibited calvarial bone repair.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Huesos/anomalías , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Cráneo/efectos de los fármacos , Cráneo/crecimiento & desarrollo , Envejecimiento/patología , Animales , Biomimética , Resorción Ósea , Trasplante Óseo , Fosfatos de Calcio , Cartílago/crecimiento & desarrollo , Materiales Biocompatibles Revestidos , Sistemas de Liberación de Medicamentos , Femenino , Curación de Fractura , Ratones , Ratones Noqueados
19.
Mater Sci Eng C Mater Biol Appl ; 118: 111519, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255074

RESUMEN

Management of chronic diabetic ulcers remains as a major challenge in healthcare which requires extensive multidisciplinary approaches to ensure wound protection, management of excess wound exudates and promoting healing. Developing wound healing patches that can act as a protective barrier and support healing is highly needed to manage chronic diabetic ulcers. In order to boost the wound healing potential of patch material, bioactive agents such as growth factors can be used. Porous membranes made of nanofibers generated using electrospinning have potential for application as wound coverage matrices. However, electrospun membranes produced from several biodegradable polymers are hydrophobic and cannot manage the excess exudates produced by chronic wounds. Gelatin-methacryloyl (GelMA) hydrogels absorb excess exudates and provide an optimal biological environment for the healing wound. Epidermal growth factor (EGF) promotes cell migration, angiogenesis and overall wound healing. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes provide microbial, thermal and mechanical barrier properties to the wound healing patch. Herein, we developed a biodegradable polymeric patch based on the combination of mechanically stable electrospun PHBV, GelMA hydrogel and EGF for promoting diabetic wound healing. In vitro and in vivo studies were carried out to evaluate the effect of developed patches on cell proliferation, cell migration, angiogenesis and wound healing. Our results showed that EGF loaded patches can promote the migration and proliferation of multiple types of cells (keratinocytes, fibroblasts and endothelial cells) and enhance angiogenesis. In situ development of the patch and subsequent in vivo wound healing study in diabetic rats showed that EGF loaded patches provide rapid healing compared to control wounds. Interestingly, 100 ng EGF per cm2 of the patches was enough to provide favourable cellular response, angiogenesis and rapid diabetic wound healing. Overall results indicate that EGF loaded PHBV-GelMA hybrid patch could be a promising approach to promote diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Gelatina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Endoteliales , Poliésteres , Ratas , Cicatrización de Heridas
20.
J Biomed Mater Res A ; 109(5): 600-614, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608183

RESUMEN

Polycaprolactone (PCL) fiber mats with different surface modifications were functionalized with a chitosan nanogel coating to attach the growth factor human bone morphogenetic protein 2 (BMP-2). Three different hydrophilic surface modifications were compared with regard to the binding and in vitro release of BMP-2. The type of surface modification and the specific surface area derived from the fiber thickness had an important influence on the degree of protein loading. Coating the PCL fibers with polydopamine resulted in the binding of the largest BMP-2 quantity per surface area. However, most of the binding was irreversible over the investigated period of time, causing a low release in vitro. PCL fiber mats with a chitosan-graft-PCL coating and an additional alginate layer, as well as PCL fiber mats with an air plasma surface modification boundless BMP-2, but the immobilized protein could almost completely be released. With polydopamine and plasma modifications as well as with unmodified PCL, high amounts of BMP-2 could also be attached directly to the surface. Integration of BMP-2 into the chitosan nanogel functionalization considerably increased binding on all hydrophilized surfaces and resulted in a sustained release with an initial burst release of BMP-2 without detectable loss of bioactivity in vitro.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacocinética , Quitosano , Nanogeles , Poliésteres , Andamios del Tejido , Adsorción , Aire , Alginatos , Animales , Bioensayo , Proteína Morfogenética Ósea 2/química , Carbocianinas , Línea Celular , Materiales Biocompatibles Revestidos , Preparaciones de Acción Retardada , Liberación de Fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles , Ratones , Polímeros , Unión Proteica , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA