Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.430
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(41): e2305327120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788308

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) show promise in optoelectronics: Recent advancements in the synthesis of large-diameter indium arsenide (InAs) CQDs provide access to short-wave infrared (IR) wavelengths for three-dimensional ranging and imaging. In early studies, however, we were unable to achieve a rectifying photodiode using CQDs and molybdenum oxide/polymer hole transport layers, as the shallow valence bandedge (5.0 eV) was misaligned with the ionization potentials of the widely used transport layers. This occurred when increasing CQD diameter to decrease the bandgap below 1.1 eV. Here, we develop a rectifying junction among InAs CQD layers, where we use molecular surface modifiers to tune the energy levels of InAs CQDs electrostatically. Previously developed bifunctional dithiol ligands, established for II-VI and IV-VI CQDs, exhibit slow reaction kinetics with III-V surfaces, causing the exchange to fail. We study carboxylate and thiolate binding groups, united with electron-donating free end groups, that shift upward the valence bandedge of InAs CQDs, producing valence band energies as shallow as 4.8 eV. Photophysical studies combined with density functional theory show that carboxylate-based passivants participate in strong bidentate bridging with both In and As on the CQD surface. The tuned CQD layer incorporated into a photodiode structure achieves improved performance with EQE (external quantum efficiency) of 35% (>1 µm) and dark current density < 400 nA cm-2, a >25% increase in EQE and >90% reduced dark current density compared to the reference device. This work represents an advance over previous III-V CQD short-wavelength IR photodetectors (EQE < 5%, dark current > 10,000 nA cm-2).

2.
J Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197088

RESUMEN

Heavy metals disrupt mitochondrial function and activate the NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome. We investigated the effect of lead (Pb)/cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast under normoxic, hypoxic and pro-inflammatory conditions. JEG-3, BeWo and HTR-8/SVneo cells were exposed to Pb or Cd for 24 h in the absence or presence of hypoxia or pro-inflammatory lipopolysaccharide (LPS) or poly(I:C). Then, we evaluated cell viability, apoptosis, mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨ), NLRP3 inflammasome proteins and interleukin (IL)-1ß secretion. Although our data showed that Pb, Cd, hypoxia, poly(I:C) and LPS decreased mtDNAcn in the three cell lines, the effects of these treatments on other biomarkers were different in the different cell lines. We found that hypoxia decreased ΔΨ and promoted apoptosis in JEG-3 cells, increased ΔΨ and prevented apoptosis in BeWo cells, and did not change ΔΨ and apoptosis in HTR-8/SVneo cells. Moreover, Pb under hypoxic conditions reduced ΔΨ and promoted apoptosis of BeWo cells. Exposure of BeWo and HTR-8/SVneo cells to hypoxia, Pb or Cd alone upregulated the expression of NLRP3 and pro-caspase 1 but did not activate the NLRP3 inflammasome since cleaved-caspase 1 and IL-1ß were not increased. To conclude, Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines, but in a cell line-specific way. KEY POINTS: The objective of this work was an understanding of the effect of lead (Pb) and cadmium (Cd) on mitochondrial function and NLRP3 inflammasome activation in human trophoblast cell lines under normoxic, hypoxic and pro-inflammatory conditions. Apoptosis of JEG-3 cells was increased by hypoxia, while in BeWo cells, apoptosis was decreased by hypoxia, and in HTR-8/SVneo, apoptosis was not affected by hypoxic treatment. Exposure to either Pb or Cd decreased mtDNAcn in three human placental trophoblast cell lines. However, Pb under hypoxia induced a decrease of ΔΨ and promoted apoptosis of BeWo cells, but Cd did not induce a reduction in ΔΨ in the three trophoblast cell lines under any conditions. Exposure to hypoxia, Pb or Cd increased NLRP3 and pro-caspase 1 in BeWo and HTR-8/SVneo cells. Our findings highlight that Pb and Cd affected trophoblast mitochondrial function and NLRP3 proteins in trophoblast cell lines but in a cell line-specific way.

3.
Proteins ; 92(6): 776-794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258321

RESUMEN

Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids  (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Bacterianas , Metales Pesados , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Metales Pesados/química , Metales Pesados/metabolismo , Dominios Proteicos , Cianobacterias/metabolismo , Cianobacterias/química , Cianobacterias/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Pliegue de Proteína
4.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840042

RESUMEN

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Asunto(s)
Broussonetia , Metalotioneína , Metales Pesados , Filogenia , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/química , Metales Pesados/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estrés Fisiológico , Secuencia de Aminoácidos , Unión Proteica
5.
Curr Issues Mol Biol ; 46(6): 6052-6068, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921032

RESUMEN

Heavy metal (HM) pollution, specifically cadmium (Cd) contamination, is a worldwide concern for its consequences for plant health and ecosystem stability. This review sheds light on the intricate mechanisms underlying Cd toxicity in plants and the various strategies employed by these organisms to mitigate its adverse effects. From molecular responses to physiological adaptations, plants have evolved sophisticated defense mechanisms to counteract Cd stress. We highlighted the role of phytochelatins (PCn) in plant detoxification, which chelate and sequester Cd ions to prevent their accumulation and minimize toxicity. Additionally, we explored the involvement of glutathione (GSH) in mitigating oxidative damage caused by Cd exposure and discussed the regulatory mechanisms governing GSH biosynthesis. We highlighted the role of transporter proteins, such as ATP-binding cassette transporters (ABCs) and heavy metal ATPases (HMAs), in mediating the uptake, sequestration, and detoxification of Cd in plants. Overall, this work offered valuable insights into the physiological, molecular, and biochemical mechanisms underlying plant responses to Cd stress, providing a basis for strategies to alleviate the unfavorable effects of HM pollution on plant health and ecosystem resilience.

6.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098900

RESUMEN

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hidroponía , Plomo , Sesbania , Contaminantes del Suelo , Carbón Orgánico/farmacología , Plomo/toxicidad , Plomo/metabolismo , Sesbania/metabolismo , Sesbania/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo
7.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347449

RESUMEN

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Asunto(s)
Brassica napus , Metales Pesados , Contaminantes del Suelo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Tocoferoles/metabolismo , Tocoferoles/farmacología , Metales Pesados/metabolismo , Prolina/metabolismo , Contaminantes del Suelo/metabolismo
8.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491471

RESUMEN

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Asunto(s)
Cadmio , Giberelinas , Contaminantes del Suelo , Cadmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/metabolismo , Suelo/química , Malondialdehído/metabolismo
9.
BMC Plant Biol ; 24(1): 897, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343873

RESUMEN

Heavy metal toxicity adversely affects plants by changing physiological, biochemical, and molecular mechanisms. Lead (Pb) is one of the most common heavy metal pollutants. Hence this study investigated changes caused by exogenous methyl jasmonate (MeJA; 20 and 100 µM) and salicylic acid (SA; 2 and 20 mM) elicitors in local Karacadag rice exposed to Pb stress (0, 100, and 400 ppm). The effects of elicitors on photosynthetic pigment content (chlorophyll a, chlorophyll b, and total carotenoid), proline, malondialdehyde (MDA), total phenolic and flavonoid, Pb, and total protein contents in stressed plants were evaluated. All parameters studied increased and decreased at varying rates in the treatment groups compared to the Pb-free group (control), indicating that rice plants were affected by Pb stress. The elicitors (MeJA, SA, and MeJA + SA) were applied by foliar spraying. The elicitor treatments increased photosynthetic pigment content, total protein, proline, total flavonoid, and phenolic contents depending on the elicitor type and concentration. MDA and Pb contents, increasing with Pb toxicity, decreased with elicitor treatments, and the stress degree was reduced. When the elicitors were compared, SA was more effective than MeJA in total flavonoid content at 400 ppm Pb toxicity. However, MeJA was more effective in photosynthetic pigment contents, MDA, total protein, Pb, total phenolic, and proline contents. The best results for all parameters examined in rice plants exposed to Pb toxicity were obtained from the 400 ppm Pb + 2 mM SA + 20 µM MeJA treatment group. In conclusion, this study showed that the combined application of MeJA + SA alleviated the harmful effects of Pb by reducing MDA and increasing photosynthetic pigments, total protein, proline, and secondary metabolites, especially at high Pb concentrations. Consequently, this study demonstrated that the combined use of MeJA and SA in rice plants eliminated the negative effects of stress quite effectively, even at high Pb concentrations. Therefore, future studies should focus on the synergistic application of different elicitors to better understand the effects of heavy metal toxicity on plant growth and development.


Asunto(s)
Acetatos , Clorofila , Ciclopentanos , Plomo , Oryza , Oxilipinas , Ácido Salicílico , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Plomo/toxicidad , Oxilipinas/farmacología , Ciclopentanos/farmacología , Ácido Salicílico/farmacología , Acetatos/farmacología , Clorofila/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Prolina/metabolismo , Flavonoides , Carotenoides/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo
10.
BMC Plant Biol ; 24(1): 933, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379805

RESUMEN

Chitosan (CTS) is recognized for enhancing a plant's resilience to various environmental stresses, such as salinity and drought. Moreover, salicylic acid (SA) is acknowledged as a growth regulator involved in addressing metal toxicity. However, the effectiveness of both compounds in mitigating Cr-induced stress has remained relatively unexplored, especially in the case of Aconitum napellus, a medicinally and floricultural important plant. Therefore, the primary objective of this study was to investigate the potential of CTS and SA in alleviating chromium (Cr)-induced stress in A. napellus. To address these research questions, we conducted a controlled experiment using potted plants to evaluate the individual and combined impacts of CTS and SA on plants exposed to Cr stress. Foliar application of CTS (0.4 g/L) or SA (0.25 mmol/L) led to significant improvements in the growth, chlorophyll content, fluorescence, and photosynthetic traits of A. napellus plants under Cr stress. The most notable effects were observed with the combined application of CTS and SA, resulting in increases in various morphological parameters, such as shoot length (2.89% and 7.02%) and root length (27.75% and 3.36%) under the Cr 1 and Cr 2 treatments, respectively. Additionally, several physiological parameters, such as chlorophyll a (762.5% and 145.56%), chlorophyll b (762.5% and 145.56%), carotenoid (17.03% and 28.57%), and anthocyanin (112.01% and 47.96%) contents, were notably improved under the Cr 1 and Cr 2 treatments, respectively. Moreover, the combined treatment of CTS and SA improved the fluorescence parameters while decreasing the levels of enzymatic antioxidants such as catalase (27.59% and 43.79%, respectively). The application also notably increased osmoprotectant parameters, such as the total protein content (54.11% and 20.07%) and the total soluble sugar content (78.17% and 49.82%) in the leaves of A. napellus in the Cr 1 and 2 treatments, respectively. In summary, these results strongly suggest that the simultaneous use of exogenous CTS and SA is an effective strategy for alleviating the detrimental effects of Cr stress on A. napellus. This integrated approach opens promising avenues for further exploration and potential implementation within agricultural production systems.


Asunto(s)
Aconitum , Quitosano , Cromo , Fotosíntesis , Ácido Salicílico , Ácido Salicílico/farmacología , Quitosano/farmacología , Fotosíntesis/efectos de los fármacos , Aconitum/efectos de los fármacos , Aconitum/fisiología , Clorofila/metabolismo , Estrés Fisiológico/efectos de los fármacos
11.
BMC Plant Biol ; 24(1): 748, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103795

RESUMEN

Lead affects photosynthesis and growth and has serious toxic effects on plants. Here, the differential expressed proteins (DEPs) in D. huoshanense were investigated under different applications of lead acetate solutions. Using label-free quantitative proteomics methods, more than 12,000 peptides and 2,449 proteins were identified. GO and KEGG functional annotations show that these differential proteins mainly participate in carbohydrate metabolism, energy metabolism, amino acid metabolism, translation, protein folding, sorting, and degradation, as well as oxidation and reduction processes. A total of 636 DEPs were identified, and lead could induce the expression of most proteins. KEGG enrichment analysis suggested that proteins involved in processes such as homologous recombination, vitamin B6 metabolism, flavonoid biosynthesis, cellular component organisation or biogenesis, and biological regulation were significantly enriched. Nearly 40 proteins are involved in DNA replication and repair, RNA synthesis, transport, and splicing. The effect of lead stress on D. huoshanense may be achieved through photosynthesis, oxidative phosphorylation, and the production of excess antioxidant substances. The expression of 9 photosynthesis-related proteins and 12 oxidative phosphorylation-related proteins was up-regulated after lead stress. Furthermore, a total of 3 SOD, 12 POD, 3 CAT, and 7 ascorbate-related metabolic enzymes were identified. Under lead stress, almost all key enzymes involved in the synthesis of antioxidant substances are up-regulated, which may facilitate the scavenging of oxygen-free radical scavenging. The expression levels of some key enzymes involved in sugar and glycoside synthesis, the phenylpropanoid synthesis pathway, and the terpene synthesis pathway also increased. More than 30 proteins involved in heavy metal transport were also identified. Expression profiling revealed a significant rise in the expression of the ABC-type multidrug resistance transporter, copper chaperone, and P-type ATPase with exposure to lead stress. Our findings lay the basis for research on the response and resistance of D. huoshanense to heavy metal stress.


Asunto(s)
Dendrobium , Plomo , Proteínas de Plantas , Proteómica , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plomo/toxicidad , Dendrobium/efectos de los fármacos , Dendrobium/metabolismo , Dendrobium/genética , Estrés Fisiológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
12.
BMC Plant Biol ; 24(1): 484, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822228

RESUMEN

Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.


Asunto(s)
Adenosina Trifosfatasas , Metales Pesados , Metales Pesados/toxicidad , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
13.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987664

RESUMEN

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Asunto(s)
Arsénico , Carbón Orgánico , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Arsénico/toxicidad , Bacillus/fisiología , Contaminantes del Suelo/toxicidad , Clorofila/metabolismo
14.
BMC Plant Biol ; 24(1): 930, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370516

RESUMEN

BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.


Asunto(s)
Cadmio , Compuestos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cadmio/metabolismo , Compuestos Férricos/metabolismo , Cloruros/metabolismo , Fertilizantes , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
15.
Planta ; 259(5): 103, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551683

RESUMEN

MAIN CONCLUSION: Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Ecosistema , Biodegradación Ambiental , Proteómica , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Suelo
16.
Plant Biotechnol J ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898780

RESUMEN

Ensuring rice yield and grain safety quality are vital for human health. In this study, we developed two-line hybrid rice (TLHR) with ultra-low grain cadmium (Cd) and arsenic (As) accumulation by pyramiding novel alleles of OsNramp5 and OsLsi2. We first generated low Cd accumulation restorer (R) lines by editing OsNramp5, OsLCD, and OsLCT in japonica and indica. After confirming that OsNramp5 was most efficient in reducing Cd, we edited this gene in C815S, a genic male sterile line (GMSL), and screened it for alleles with low Cd accumulation. Next, we generated R and GMSL lines with low As accumulation by editing OsLsi2 in a series of YK17 and C815S lines. When cultivated in soils that were heavily polluted with Cd and As, the edited R, GMSL, and TLHR plants showed significantly reduced heavy metal accumulation, while maintaining a relatively stable yield potential. This study provides an effective scheme for the safe production of grains in As- and/or Cd-polluted paddy fields.

17.
BMC Microbiol ; 24(1): 81, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461228

RESUMEN

BACKGROUND: Copper-induced gene expression in Xanthomonas campestris pv. campestris (Xcc) is typically evaluated using targeted approaches involving qPCR. The global response to copper stress in Xcc and resistance to metal induced damage is not well understood. However, homologs of heavy metal efflux genes from the related Stenotrophomonas genus are found in Xanthomonas which suggests that metal related efflux may also be present. METHODS AND RESULTS: Gene expression in Xcc strain BrA1 exposed to 0.8 mM CuSO4.5H2O for 15 minutes was captured using RNA-seq analysis. Changes in expression was noted for genes related to general stress responses and oxidoreductases, biofilm formation, protein folding chaperones, heat-shock proteins, membrane lipid profile, multiple drug and efflux (MDR) transporters, and DNA repair were documented. At this timepoint only the cohL (copper homeostasis/tolerance) gene was upregulated as well as a chromosomal czcCBA efflux operon. An additional screen up to 4 hrs using qPCR was conducted using a wider range of heavy metals. Target genes included a cop-containing heavy metal resistance island and putative metal efflux genes. Several efflux pumps, including a copper resistance associated homolog from S. maltophilia, were upregulated under toxic copper stress. However, these pumps were also upregulated in response to other toxic heavy metals. Additionally, the temporal expression of the coh and cop operons was also observed, demonstrating co-expression of tolerance responses and later activation of part of the cop operon. CONCLUSIONS: Overall, initial transcriptional responses focused on combating oxidative stress, mitigating protein damage and potentially increasing resistance to heavy metals and other biocides. A putative copper responsive efflux gene and others which might play a role in broader heavy metal resistance were also identified. Furthermore, the expression patterns of the cop operon in conjunction with other copper responsive genes allowed for a better understanding of the fate of copper ions in Xanthomonas. This work provides useful evidence for further evaluating MDR and other efflux pumps in metal-specific homeostasis and tolerance phenotypes in the Xanthomonas genus. Furthermore, non-canonical copper tolerance and resistance efflux pumps were potentially identified. These findings have implications for interpreting MIC differences among strains with homologous copLAB resistance genes, understanding survival under copper stress, and resistance in disease management.


Asunto(s)
Xanthomonas campestris , Xanthomonas , Cobre/farmacología , Cobre/metabolismo , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
18.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38195004

RESUMEN

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Asunto(s)
Cadmio , Metaloproteinasa 2 de la Matriz , Humanos , Ratones , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Lipoilación , Pulmón , Transducción de Señal , Fibrosis , Fibroblastos , Factor de Crecimiento Transformador beta1/metabolismo
19.
Chemistry ; 30(11): e202303363, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38116821

RESUMEN

When bismuth atoms are incorporated into cyclic organic systems, this commonly goes along with strained or distorted molecular geometries, which can be exploited to modulate the physical and chemical properties of these compounds. In six-membered heterocycles, bismuth atoms are often accompanied by oxygen, sulfur or nitrogen as a second hetero-element. In this work, we present the first examples of six-membered rings, in which two CH units are replaced by BiX moieties (X=Cl, Br, I), resulting in dihydro-anthracene analogs. Their behavior in chemically reversible reduction reactions is explored, aiming at the generation of dibisma-anthracene (bismanthrene). Heterometallic compounds (Bi/Fe, Bi/Mn) are introduced as potential bismanthrene surrogates, as supported by bismanthrene-transfer to selenium. Analytical techniques used to investigate the reported compounds include NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.

20.
Adv Appl Microbiol ; 129: 171-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389705

RESUMEN

Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.


Asunto(s)
Biodegradación Ambiental , Hongos , Metaloides , Micorrizas , Plantas , Contaminantes del Suelo , Simbiosis , Plantas/microbiología , Metaloides/metabolismo , Metaloides/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Hongos/metabolismo , Hongos/genética , Micorrizas/metabolismo , Micorrizas/fisiología , Endófitos/metabolismo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Metales/metabolismo , Metales/toxicidad , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA