Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bull Entomol Res ; 113(1): 1-10, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36239260

RESUMEN

Ips typographus (L.) and Pityogenes chalcographus (L.) (Coleoptera: Curculionidae) are two common bark beetle species on Norway spruce in Eurasia. Multiple biotic and abiotic factors affect the life cycles of these two beetles, shaping their ecology and evolution. In this article, we provide a comprehensive and comparative summary of selected life-history traits. We highlight similarities and differences in biotic factors, like host range, interspecific competition, host colonization, reproductive behaviour and fungal symbioses. Moreover, we focus on the species' responses to abiotic factors and compare their temperature-dependent development and flight behaviour, cold adaptations and diapause strategies. Differences in biotic and abiotic traits might be the result of recent, species-specific evolutionary histories, particularly during the Pleistocene, with differences in glacial survival and postglacial recolonization. Finally, we discuss future research directions to understand ecological and evolutionary pathways of the two bark beetle species, for both basic research and applied forest management.


Asunto(s)
Escarabajos , Picea , Gorgojos , Animales , Gorgojos/microbiología , Corteza de la Planta/microbiología , Picea/microbiología
2.
Proc Natl Acad Sci U S A ; 114(13): 3352-3357, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28298529

RESUMEN

The Southern Ocean regulates the ocean's biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.


Asunto(s)
Antozoos/química , Dióxido de Carbono/análisis , Animales , Regiones Antárticas , Antozoos/metabolismo , Atmósfera , Dióxido de Carbono/metabolismo , Nitratos/análisis , Océanos y Mares , Fitoplancton/química , Fitoplancton/metabolismo , Agua de Mar/química
3.
BMC Evol Biol ; 19(1): 23, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642240

RESUMEN

BACKGROUND: Peninsulas often harvest high genetic diversity through repeated southward migrations of species during glacial maxima. Studies addressing within-species evolutionary responses to climate fluctuations in northeast Asia are limited compared to other regions of the world, and more so in the Korean Peninsula. In this study, we conducted the first population-level study of the yellow-throated marten, Martes flavigula, from the Korean Peninsula, Russian, Taiwanese and Chinese localities in a biogeographic framework using mitochondrial (cyt-b, nd2, cr) and nuclear gene sequencing (ghr). RESULTS: Bayesian analyses revealed a rather young population, with a split from the most recent common ancestor at around 125 kya. Martes flavigula likely colonized the Korean Peninsula from Mainland China through the Yellow Sea twice, ca. 60 kya and 20 kya. Korean martens diversified during the Late Pleistocene with at least two dispersal events out of Korea, towards the southwest to Taiwan (ca. 80 kya) and towards the North into Russia and eastern China; most likely after the Last Glacial Maxima (ca. 20 kya). We argue that the lack of population structure and mixed populations is possibly a consequence of the high dispersal capability of the species. The Bayesian skyline plot revealed a population decline within the last 5000 years, suggesting potential negative biotic and anthropogenic effects in the area. We find that local populations are not genetically differentiated, therefore no perceptible population structure within Korea was found. CONCLUSIONS: The topography and geography of the Korean Peninsula has played a pivotal role in its colonization. Connections between the Korean Peninsula and the Mainland through sea-level drops of the Yellow Sea at times of glacial maxima and the high dispersal capability of M. flavigula adds to the lack of geographical structure in this species and the paraphyly of Korean lineages.


Asunto(s)
Mustelidae/clasificación , Filogenia , Filogeografía , Conducta Predatoria , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Marcadores Genéticos , Genética de Población , Funciones de Verosimilitud , Dinámica Poblacional , República de Corea , Alineación de Secuencia
4.
Am J Bot ; 104(5): 757-771, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28515078

RESUMEN

PREMISE OF THE STUDY: The Bahamas archipelago is formed by young, tectonically stable carbonate banks that harbor direct geological evidence of global ice-volume changes. We sought to detect signatures of major changes on gene flow patterns and reconstruct the phylogeographic history of the monophyletic Zamia pumila complex across the Bahamas. METHODS: Nuclear molecular markers with both high and low mutation rates were used to capture two different time scale signatures and test several gene flow and demographic hypotheses. KEY RESULTS: Single-copy nuclear genes unveiled apparent ancestral admixture on Andros, suggesting a significant role of this island as main hub of diversity of the archipelago. We detected demographic and spatial expansion of the Zamia pumila complex on both paleo-provinces around the Piacenzian (Pliocene)/Gelasian (Pleistocene). Populations evidenced signatures of different migration models that have occurred at two different times. Populations on Long Island (Z. lucayana) may either represent a secondary colonization of the Bahamas by Zamia or a rapid and early-divergence event of at least one population on the Bahamas. CONCLUSIONS: Despite changes in migration patterns with global climate, expected heterozygosity with both marker systems remains within the range reported for cycads, but with significant levels of increased inbreeding detected by the microsatellites. This finding is likely associated with reduced gene flow between and within paleo-provinces, accompanied by genetic drift, as rising seas enforced isolation. Our study highlights the importance of the maintenance of the predominant direction of genetic exchange and the role of overseas dispersion among the islands during climate oscillations.


Asunto(s)
Biodiversidad , Filogenia , Zamiaceae/genética , Bahamas , Variación Genética , Islas , Repeticiones de Microsatélite , Filogeografía
5.
Zoolog Sci ; 34(3): 201-210, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28589839

RESUMEN

Reliable estimates of evolutionary rates of mitochondrial DNA might allow us to build realistic evolutionary scenarios covering broad time scales based on phylogenetic inferences. In the present study, we sought to obtain estimates of evolutionary rates in murine rodents using calibrations against historical biogeographic events. We first assumed that land-bridge-like structures that appeared intermittently at glacial maxima with 100,000-year intervals shaped the divergence patterns of cytochrome b (Cytb) sequences (1140 bp) of the larger Japanese wood mouse Apodemus speciosus. The comparison of sequences from peripheral remote islands that are separated from one another by deep straits allowed us to estimate mitochondrial DNA evolutionary rates (substitutions/site/million years) to be 0.027 to 0.036, with presumed calibrations from 140,000, 250,000, 350,000, and 440,000 years ago. Second, we addressed rapid expansion events inferred from analyses of the Cytb sequences of the lesser Japanese wood mouse A. argenteus. We detected five expansion signals in the dataset and established three categories based on the expansion parameter tau values: 3.9, 5.6-5.7, and 7.8-8.1. Considering that the climate became warmer 15,000, 53,000, and 115,000 years ago after preceding periods of rapid cooling, we calculated evolutionary rates to be 0.114, 0.047, and 0.031, respectively. This preliminary concept of the evolutionary rates on a time scale from 15,000 to 440,000 years ago for the wood mouse should be refined and tested in other species of murine rodents, including mice and rats.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Murinae/genética , Animales , Ambiente , Variación Genética , Japón , Filogenia , Especificidad de la Especie
6.
Mol Phylogenet Evol ; 96: 112-117, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26732489

RESUMEN

This study assesses the phylogeography of the Chinese four-eyed sleeper (Bostrychus sinensis) with one mitochondrial and one nuclear genes and two morphological characters. Phylogenetic and population genetic analyses of the sequences reveals two phylogeographic lineages from the East and South China Seas, which are corroborated by the morphological data. The vicariance of the two lineages is attributed to the Pleistocene Ice Age exposure of the Taiwan Strait and consequent connection of Taiwan to the mainland, which thereby introduced an ecological barrier to gene flow between populations in the East and South China Seas. The distributions of the two lineages now overlap in the East China Sea and this secondary contact is attributed to biased northward migration along the two main currents of the Taiwan Strait following its interglacial re-flooding. In conclusion, this study reinforces the importance of "vicariance, then secondary contact" due to Late Pliocene and Pleistocene sea-level changes to the phylogeography of marine species. Specifically, it corroborates the importance of Pleistocene sea-level changes in the Taiwan Strait to the phylogeography of Chinese inshore species.


Asunto(s)
Perciformes/genética , Filogenia , Animales , Núcleo Celular/genética , China , Flujo Génico , Genes Mitocondriales/genética , Océano Pacífico , Filogeografía , Taiwán
7.
Mol Ecol ; 24(18): 4759-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26290117

RESUMEN

Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.


Asunto(s)
Alnus/genética , Cambio Climático , Variación Genética , Genética de Población , Refugio de Fauna , Teorema de Bayes , ADN de Cloroplastos/genética , ADN de Plantas/genética , Europa (Continente) , Evolución Molecular , Repeticiones de Microsatélite , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
8.
Mol Ecol ; 22(15): 4055-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23889545

RESUMEN

The demographic history of Rhinolophus hipposideros (lesser horseshoe bat) was reconstructed across its European, North African and Middle-Eastern distribution prior to, during and following the most recent glaciations by generating and analysing a multimarker data set. This data set consisted of an X-linked nuclear intron (Bgn; 543 bp), mitochondrial DNA (cytb-tRNA-control region; 1630 bp) and eight variable microsatellite loci for up to 373 individuals from 86 localities. Using this data set of diverse markers, it was possible to determine the species' demography at three temporal stages. Nuclear intron data revealed early colonization into Europe from the east, which pre-dates the Quaternary glaciations. The mtDNA data supported multiple glacial refugia across the Mediterranean, the largest of which were found in the Ibero-Maghreb region and an eastern location (Anatolia/Middle East)-that were used by R. hipposideros during the most recent glacial cycles. Finally, microsatellites provided the most recent information on these species' movements since the Last Glacial Maximum and suggested that lineages that had diverged into glacial refugia, such as in the Ibero-Maghreb region, have remained isolated. These findings should be used to inform future conservation management strategies for R. hipposideros and show the power of using a multimarker data set for phylogeographic studies.


Asunto(s)
Quirópteros/genética , ADN Mitocondrial/genética , Repeticiones de Microsatélite/genética , Animales , Secuencia de Bases , Biglicano/genética , Citocromos b/genética , Europa (Continente) , Evolución Molecular , Frecuencia de los Genes , Marcadores Genéticos/genética , Variación Genética , Haplotipos/genética , Filogeografía , Análisis de Secuencia de ADN
9.
Ecol Evol ; 12(12): e9602, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514551

RESUMEN

Recent studies have uncovered patterns of genomic divergence in marine teleosts where panmixia due to high gene flow has been the general paradigm. These signatures of divergent selection are often impacted by structural variants, acting as "supergenes" facilitating local adaptation. The highly dispersing European plaice (Pleuronectes platessa)-in which putative structural variants (i.e., inversions) have been identified-has successfully colonized the brackish water ecosystem of the Baltic Sea. Thus, the species represents an ideal opportunity to investigate how the interplay of gene flow, structural variants, natural selection, past demographic history, and gene flow impacts on population (sub)structuring in marine systems. Here, we report on the generation of an annotated draft plaice genome assembly in combination with population sequencing data-following the salinity gradient from the Baltic Sea into the North Sea together with samples from Icelandic waters-to illuminate genome-wide patterns of divergence. Neutral markers pointed at large-scale panmixia across the European continental shelf associated with high gene flow and a common postglacial colonization history of shelf populations. However, based on genome-wide outlier loci, we uncovered signatures of population substructuring among the European continental shelf populations, i.e., suggesting signs of ongoing selection. Genome-wide selection analyses (xp-EHH) and the identification of genes within genomic regions of recent selective sweeps-overlapping with the outlier loci-suggest that these represent the signs of divergent selection. Our findings provide support for genomic divergence driven by local adaptation in the face of high gene flow and elucidate the relative importance of demographic history versus adaptive divergence in shaping the contemporary population genetic structure of a marine teleost. The role of the putative inversion(s) in the substructuring-and potentially ongoing adaptation-was seemingly not substantial.

10.
Ecol Evol ; 11(9): 4670-4687, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976839

RESUMEN

Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice-age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5'-cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose-1,5-bisphosphate carboxylase large subunit-3' (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within-population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co-occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time-calibrated phylogeny placed divergences between rbcL-COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL-COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll-Milankovitch climate cycles in the Pleistocene Epoch.

11.
Ann Rev Mar Sci ; 12: 559-586, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31899673

RESUMEN

Much of the global cooling during ice ages arose from changes in ocean carbon storage that lowered atmospheric CO2. A slew of mechanisms, both physical and biological, have been proposed as key drivers of these changes. Here we discuss the current understanding of these mechanisms with a focus on how they altered the theoretically defined soft-tissue and biological disequilibrium carbon storage at the peak of the last ice age. Observations and models indicate a role for Antarctic sea ice through its influence on ocean circulation patterns, but other mechanisms, including changes in biological processes, must have been important as well, and may have been coordinated through links with global air temperature. Further research is required to better quantify the contributions of the various mechanisms, and there remains great potential to use the Last Glacial Maximum and the ensuing global warming as natural experiments from which to learn about climate-driven changes in the marine ecosystem.


Asunto(s)
Organismos Acuáticos/metabolismo , Ciclo del Carbono , Monitoreo del Ambiente/métodos , Cubierta de Hielo , Proteínas de Transporte de Membrana , Agua de Mar/química , Regiones Antárticas , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Ecosistema , Calentamiento Global , Temperatura
12.
Biol J Linn Soc Lond ; 127(1): 24-33, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31186586

RESUMEN

The Apennine Mountains in Italy are an important biogeographical region and of particular interest in phylogeographical research, because they have been a refugium during Pleistocene glaciation events for numerous European species. We performed a genetic study on the Eurasian bark beetle Pityogenes chalcographus (Linnaeus, 1760), focusing on two Apennine (Italian) and two Central European (Austrian) locations to assess the influence of the Apennines in the evolutionary history of the beetle, particularly during the Pleistocene. We analysed a part of the mitochondrial COI gene and a set of 5470 informative genome-wide markers to understand its biogeography. We found 75 distinct mitochondrial haplotypes, which are structured in three main clades. In general, the Apennine locations harbour a higher number of mitochondrial clades than Central European sites, with one specific clade exclusively detected in the Apennines. Analysis of our genome-wide, multi-locus dataset reveals a clustering of P. chalcographus by geography, with Italian individuals clearly separated from Austrian samples. Our data highlight the significance of the Apennines for the genetic diversity of P. chalcographus and support the hypothesis that this area was an important refugium during unfavourable conditions in the Pleistocene. We discuss additional life-history traits and processes that shaped the evolution of this widespread beetle.

13.
Zookeys ; (740): 97-108, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29674891

RESUMEN

Is it correct to look for a supposedly missing species by focusing research at the type locality? A species can be declared extinct because for an unusual amount of time it has not been seen again; however, in the frame of the climate change it is likely that a supposedly missing species is a lucky survivor not seen because it was not searched for in the correct environment. We used the strictly endemic Leistus punctatissimus Breit, 1914 (Coleoptera, Carabidae) as the case study for testing the latter hypothesis vs. the type locality approach. On the basis of past unsuccessful searches in the Dolomites (a mountain range in the eastern Alps, Italy) driven by the type locality approach, a study area was selected where climate change may have exerted environmental constraints on endemic species. Five pitfall traps were used in each of seven sample sites, at an average altitude of 2600 m a.s.l., within a high altitude alpine plateau covered by scarce patchy vegetation. Leistus punctatissimus was rediscovered, far from its type locality, after one hundred years since its first collection. It was part of a group of species well adapted to the extreme ecological factors of the alpine environments above the vegetation line. Following a biogeographical approach (i.e., the biogeographer's eye rather than the collector's eye) it was possible to find an endemic species of the alpine ecological landscape in places from where it probably had never disappeared. The supposed refugial area was a nunatak during the last glacial period, where Leistus punctatissimus found suitable habitat conditions, and from where it alternated between downward and uphill changes in its distribution range after the last glacial period, under the effect of climate change. From such a perspective, it can be concluded that the type locality may be the wrong place to look for a supposedly extinct species.

14.
PeerJ ; 5: e4044, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201561

RESUMEN

The effects of ice ages on speciation have been well documented for many European and North American taxa. In contrast, very few studies have addressed the consequences of such environmental and topographical changes in North East Asian species. More precisely, the Korean Peninsula offers a unique model to assess patterns and processes of speciation as it hosts the northern- and eastern-most distribution limit of some widespread Asian taxa. Despite this, studies addressing phylogeographic patterns and population genetics in the peninsula and surrounding countries are few and studies for most families are lacking. Here we inferred the phylogenetic relationships of the common toad (Bufo gargarizans) from South Korea and their North East Asian counterpart populations, based on mitochondrial data. Korean B. gargarizans GenBank BLASTs matched few individuals from nearby China, but the presence of a Korean clade suggests isolation on the Korean Peninsula, previous to the last glacial maximum, linked to sea level resurgence. Molecular clock calibrations within this group were used to date the divergence between clades and their relationship to paleo-climatic events in the area. Lack of genetic structure among South Korean populations and strong homogeneity between the Korean and some Chinese localities suggest weak isolation and recent expansion. Geographical projection of continuous coalescent maximum-clade-credibility trees shows an original Chinese expansion towards the Korean Peninsula through the Yellow Sea circa two million years ago with colonisation events dating circa 800 thousand years ago (K. y. a.). Following this colonisation, the data point to outgoing Korean Peninsula dispersal events throughout different periods, towards the North through land, and West through land bridge formations over the Yellow Sea during sea level falls. In accordance, demographic analyses revealed a population expansion in the Koran Peninsula circa 300 K. y. a., likely attributed to glacial cycle fluctuations.

15.
Sci Adv ; 3(6): e1602320, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28630902

RESUMEN

O'Dea et al. challenged the inference that the Isthmus of Panama has been in place for the last 10 million years or more and from "an exhaustive review and reanalysis of geological, paleontological, and molecular records," they argued for a "formation of the Isthmus of Panama sensu stricto around 2.8 Ma." I review environmental changes since ~5 Ma throughout Earth, and I argue that environmental changes in the Central American-Caribbean region have been part of a concurrent, worldwide phenomenon that requires a global, not local, explanation. Accordingly, evidence of environmental change from the Central American-Caribbean region does not implicate the emergence of the Isthmus of Panama.


Asunto(s)
Geología , Paleontología , Región del Caribe , Panamá
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA