Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34174187

RESUMEN

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Asunto(s)
Epigenómica , Inmunidad/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Análisis de la Célula Individual , Transcripción Genética , Vacunación , Adolescente , Adulto , Antibacterianos/farmacología , Antígenos CD34/metabolismo , Antivirales/farmacología , Reprogramación Celular , Cromatina/metabolismo , Citocinas/biosíntesis , Combinación de Medicamentos , Femenino , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Inmunidad Innata/genética , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Interferón Tipo I/metabolismo , Masculino , Células Mieloides/metabolismo , Polisorbatos/farmacología , Escualeno/farmacología , Receptores Toll-Like/metabolismo , Factor de Transcripción AP-1/metabolismo , Transcriptoma/genética , Adulto Joven , alfa-Tocoferol/farmacología
2.
Immunity ; 57(4): 613-631, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599162

RESUMEN

While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Animales , Invertebrados , Inmunidad Adaptativa , Vertebrados
3.
Immunity ; 57(2): 349-363.e9, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38309272

RESUMEN

Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Animales , Ratones , Microglía , Encéfalo/metabolismo , Osteopontina/metabolismo
4.
Semin Immunol ; 56: 101542, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34973890

RESUMEN

The dogma that immunological memory is an exclusive trait of adaptive immunity has been recently challenged by studies showing that priming of innate cells can also result in modified long-term responsiveness to secondary stimuli, once the cells have returned to a non-activated state. This phenomenon is known as 'innate immune memory', 'trained immunity' or 'innate training'. While the main known triggers of trained immunity are microbial-derived molecules such as ß-glucan, endogenous particles such as oxidized low-density lipoprotein and monosodium urate crystals can also induce trained phenotypes in innate cells. Whether exogenous particles can induce trained immunity has been overlooked. Our exposure to particulates has dramatically increased in recent decades as a result of the broad medical use of particle-based drug carriers, theragnostics, adjuvants, prosthetics and an increase in environmental pollution. We recently showed that pristine graphene can induce trained immunity in macrophages, enhancing their inflammatory response to TLR agonists, proving that exogenous nanomaterials can affect the long-term response of innate cells. The consequences of trained immunity can be beneficial, for instance, enhancing protection against unrelated pathogens; however, they can also be deleterious if they enhance inflammatory disorders. Therefore, studying the ability of particulates and biomaterials to induce innate trained phenotypes in cells is warranted. Here we analyse the mechanisms whereby particles can induce trained immunity and discuss how physicochemical characteristics of particulates could influence the induction of innate memory. We review the implications of trained immunity in the context of particulate adjuvants, nanocarriers and nanovaccines and their potential applications in medicine. Finally, we reflect on the unanswered questions and the future of the field.


Asunto(s)
Inmunidad Innata , Nanopartículas , Inmunidad Adaptativa , Adyuvantes Inmunológicos , Humanos , Memoria Inmunológica , Macrófagos
5.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256145

RESUMEN

While the vertebrate immune system consists of innate and adaptive branches, invertebrates only have innate immunity. This feature makes them an ideal model system for studying the cellular and molecular mechanisms of innate immunity sensu stricto without reciprocal interferences from adaptive immunity. Although invertebrate immunity is evolutionarily older and a precursor of vertebrate immunity, it is far from simple. Despite lacking lymphocytes and functional immunoglobulin, the invertebrate immune system has many sophisticated mechanisms and features, such as long-term immune memory, which, for decades, have been exclusively attributed to adaptive immunity. In this review, we describe the cellular and molecular aspects of invertebrate immunity, including the epigenetic foundation of innate memory, the transgenerational inheritance of immunity, genetic immunity against invading transposons, the mechanisms of self-recognition, natural transplantation, and germ/somatic cell parasitism.


Asunto(s)
Células Germinativas , Inmunidad Innata , Animales , Invertebrados , Inmunidad Adaptativa , Comunicación Celular
6.
Cell Mol Life Sci ; 78(19-20): 6395-6408, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34398252

RESUMEN

Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Animales , Epigénesis Genética/inmunología , Humanos , Inmunidad Innata/inmunología
7.
Handb Exp Pharmacol ; 276: 23-41, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34085119

RESUMEN

Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Humanos , Tolerancia Inmunológica , Monocitos , Transducción de Señal
8.
Lett Appl Microbiol ; 75(5): 1122-1135, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35730958

RESUMEN

The human gut microbiome interacts with each other and the host, which has significant effects on health and disease development. Intestinal homeostasis and inflammation are maintained by the dynamic interactions between gut microbiota and the innate and adaptive immune systems. Numerous metabolic products produced by the gut microbiota play a role in mediating cross-talk between gut epithelial and immune cells. In the event of an imbalance between the immune system and microbiota, the body becomes susceptible to infections and homeostasis is compromised. This review mainly focuses on the interplay between microbes and the immune system, such as T-cell- and B-cell-mediated adaptive responses to microbiota and signalling pathways for effective communication between the two. We have also highlighted the role of microbes in the activation of the immune response, the development of memory cells and how the immune system determines the diversity of human gut microbiota. The review also explains the relationship of commensal microbiota and their relation to the production of immunoglobulins.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Sistema Inmunológico , Simbiosis , Homeostasis
9.
J Allergy Clin Immunol ; 148(3): 843-857.e6, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33684437

RESUMEN

BACKGROUND: Prenatal exposure to infections can modify immune development. These environmental disturbances during early life potentially alter the incidence of inflammatory disorders as well as priming of immune responses. Infection with the helminth Schistosoma mansoni is widely studied for its ability to alter immune responsiveness and is associated with variations in coinfection, allergy, and vaccine efficacy in endemic populations. OBJECTIVE: Exposure to maternal schistosomiasis during early life, even without transmission of infection, can result in priming effects on offspring immune responses to bystander antigenic challenges as related to allergic responsiveness and vaccination, with this article seeking to further clarify the effects and underlying immunologic imprinting. METHODS: Here, we have combined a model of chronic maternal schistosomiasis infection with a thorough analysis of subsequent offspring immune responses to allergy and vaccination models, including viral challenge and steady-state changes to immune cell compartments. RESULTS: We have demonstrated that maternal schistosomiasis alters CD4+ responses during allergic sensitization and challenge in a skewed IL-4/B-cell-dominant response to antigenic challenge associated with limited inflammatory response. Beyond that, we have uncovered previously unidentified alterations to CD8+ T-cell responses during immunization that are dependent on vaccine formulation and have functional impact on the efficacy of vaccination against viral infection in a murine hepatitis B virus model. CONCLUSION: In addition to steady-state modifications to CD4+ T-cell polarization and B-cell priming, we have traced these modified CD8+ responses to an altered dendritic cell phenotype sustained into adulthood, providing evidence for complex priming effects imparted by infection via fetomaternal cross talk.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal/inmunología , Hipersensibilidad Respiratoria/inmunología , Esquistosomiasis/inmunología , Alérgenos/inmunología , Animales , Linfocitos B/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Feto/inmunología , Perfilación de la Expresión Génica , Inmunización , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Embarazo , Hipersensibilidad Respiratoria/genética , Schistosoma mansoni , Bazo/inmunología , Linfocitos T/inmunología
10.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498992

RESUMEN

We assessed whether concomitant exposure of human monocytes to bacterial agents and different engineered nanoparticles can affect the induction of protective innate memory, an immune mechanism that affords better resistance to diverse threatening challenges. Monocytes were exposed in vitro to nanoparticles of different chemical nature, shape and size either alone or admixed with LPS, and cell activation was assessed in terms of production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). After return to baseline conditions, cells were re-challenged with LPS and their secondary "memory" response measured. Results show that nanoparticles alone are essentially unable to generate memory, while LPS induced a tolerance memory response (less inflammatory cytokines, equal or increased anti-inflammatory cytokines). LPS-induced tolerance was not significantly affected by the presence of nanoparticles during the memory generation phase, although with substantial donor-to-donor variability. This suggests that, despite the overall lack of significant effects on LPS-induced innate memory, nanoparticles may have donor-specific effects. Thus, future nanosafety assessment and nanotherapeutic strategies will need a personalized approach in order to ensure both the safety and efficacy of nano medical compounds for individual patients.


Asunto(s)
Lipopolisacáridos , Nanopartículas , Humanos , Lipopolisacáridos/farmacología , Monocitos , Citocinas , Tolerancia Inmunológica , Inmunidad Innata
11.
Cell Microbiol ; 22(12): e13261, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32902895

RESUMEN

Infectious diseases are a leading cause of death worldwide with over 8 million fatalities accounted for in 2016. Solicitation of host immune defenses by vaccination is the treatment of choice to prevent these infections. It has long been thought that vaccine immunity was solely mediated by the adaptive immune system. However, over the past decade, numerous studies have shown that innate immune cells can also retain memory of these encounters. This process, called innate immune memory, is mediated by metabolic and epigenetic changes that make cells either hyperresponsive (trained immunity) or hyporesponsive (tolerance) to subsequent challenges. In this review, we discuss the concepts of trained immunity and tolerance in the context of host-pathogen interactions.


Asunto(s)
Inmunidad Adaptativa/inmunología , Interacciones Huésped-Patógeno/inmunología , Tolerancia Inmunológica , Inmunidad Innata/inmunología , Memoria Inmunológica , Epigénesis Genética/inmunología , Humanos , Vacunas/administración & dosificación , Vacunas/inmunología
12.
Eur J Immunol ; 49(8): 1153-1166, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31016720

RESUMEN

Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-ß1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-ß1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-ß1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.


Asunto(s)
Antígenos CD/metabolismo , Memoria Inmunológica , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Semaforinas/metabolismo , Antígenos CD/genética , Células Cultivadas , Citocinas/metabolismo , Citometría de Flujo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Vigilancia Inmunológica , Inmunomodulación , Integrina beta1/metabolismo , Interferón gamma/metabolismo , Activación de Linfocitos , Unión Proteica , Semaforinas/genética , Regulación hacia Arriba
13.
Immunol Cell Biol ; 97(7): 625-635, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31127637

RESUMEN

The microbiota plays an important role in regulating both the innate and adaptive immune systems. Many studies have focused on the ability of microbes to shape the immune system by stimulating B-cell and antibody responses and the differentiation of T helper cell function. However, an important feature of the immune system is its ability to generate memory responses, which provide increased survival for the host. This review will highlight the role of the microbiota in the induction of immune memory with a focus on both adaptive and innate memory as well as vaccine efficacy.


Asunto(s)
Inmunidad , Memoria Inmunológica , Inmunomodulación , Microbiota/inmunología , Animales , Anticuerpos/inmunología , Formación de Anticuerpos/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Inmunidad Innata , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas/inmunología
14.
Fish Shellfish Immunol ; 89: 158-169, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30930277

RESUMEN

Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.


Asunto(s)
Inmunidad Innata , Inmunidad Mucosa , Mytilus/inmunología , Animales
15.
Microb Pathog ; 118: 361-364, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29614365

RESUMEN

Immune priming in invertebrates refers to an improved immune response (and therefore a better chance of survival) upon a second encounter with a specific pathogen. Although the existence of immune priming has been evaluated in invertebrate hosts, the ability of a particular entomopathogen species or strain to influence the occurrence of immune priming has not been thoroughly evaluated. The aim of the current study was to compare the occurrence of immune priming in Tenebrio molitor larvae after homologous challenges (a dual exposure to similar entomopathogens) with Serratia marcescens, Bacillus thuringiensis and Metarhizium anisopliae. Larvae presented more effective immune priming (measured as survival rates) when exposed to M. anisopliae or B. thuringiensis than when exposed to S. marcescens. We hypothesize that the toll pathway may help T. molitor survive these enemies and that the IMD pathway may be expressed to a lesser degree in this species, which may explain why they succumb to Gram-negative bacteria. This and other recent evidence suggest that the occurrence of immune priming in these organisms must not be ruled out until this phenomenon is tested with different entomopathogens.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Larva/inmunología , Tenebrio/inmunología , Animales , Bacillus thuringiensis/patogenicidad , Larva/microbiología , Metarhizium/patogenicidad , Serratia marcescens/patogenicidad , Especificidad de la Especie , Análisis de Supervivencia , Tenebrio/microbiología
16.
Microb Pathog ; 125: 93-95, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30201591

RESUMEN

Immune priming in invertebrates occurs when the first contact with a pathogen/parasite enhances resistance after a second encounter with the same strain or species. Although the mechanisms are not well understood, there is evidence that priming the immune response of some hosts leads to greater pro-oxidant production. Parasites, in turn, might counteract the host attack with antioxidants. Virulent pathogen strains may therefore mask invertebrate immune priming. For example, different parasite species overexpress catalase as a virulence factor to resist host pro-oxidants, possibly impairing the immune priming response. The aim of this study was firstly to evaluate the specificity of immune priming in Tenebrio molitor when facing homologous and heterologous challenges. Secondly, homologous challenges were carried out with two Metarhizium anisopliae strains (Ma10 and CAT). The more virulent strain (CAT) overexpresses catalase, an antioxidant that perhaps impairs a host immune response mediated by reactive oxygen species (ROS). Indeed, T. molitor larvae exhibited better immune priming (survival) in response to the Ma10 than CAT homologous challenge. Moreover, the administration of paraquat, an ROS-promoting agent, favoured survival of the host upon exposure to each fungal strain. We propose that some pathogens likely overcome pro-oxidant-mediated immune priming defences by producing antioxidants such as catalase.


Asunto(s)
Antioxidantes/metabolismo , Catalasa/metabolismo , Evasión Inmune , Factores Inmunológicos/metabolismo , Metarhizium/enzimología , Metarhizium/inmunología , Tenebrio/inmunología , Animales , Análisis de Supervivencia
17.
Eur J Immunol ; 45(7): 1926-33, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903796

RESUMEN

Polyclonal CD8(+) T cells, with a marked innate/memory phenotype, high eomesodermin (Eomes) expression, and the capacity to generate IFN-γ rapidly without prior exposure to antigen, have been described in mice. However, even though a pool of human CD8(+) T cells expressing killer Ig-like receptors (KIRs) was recently documented, the existence of a human equivalent of murine innate/memory CD8(+) T cells remains to be established. Here, we provide evidence for a population of KIR/NKG2A(+) CD8(+) T cells in healthy human adults sharing the same features, namely increased Eomes expression, prompt IFN-γ production in response to innate-like stimulation by IL-12+IL-18, and a potent antigen-independent cytotoxic activity along with a preferential terminally differentiated effector memory phenotype. None of the above functional characteristics applied to the KIR/NKG2A(-) fraction of the Eomes(+) CD8(+) T-cell population, thereby underlining the ability of KIR/NKG2A to distinguish between "innate/memory-like" and "conventional/memory" pools of CD8(+) T cells. Remarkably, KIR/NKG2A(+) Eomes(+) CD8(+) T cells with innate-like functions and a memory/terminally differentiated effector memory phenotype were also identified in human cord blood, suggesting that their development did not depend on cognate antigens. Taken together, our results support the conclusion that CD8(+) T cells co-expressing Eomes and KIR/NKG2A may represent a new, functionally distinct "innate/memory-like" subset in humans.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Proteínas de Dominio T Box/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Sangre Fetal/citología , Sangre Fetal/inmunología , Citometría de Flujo , Humanos , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología
18.
Eur J Immunol ; 45(11): 2994-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26389517

RESUMEN

The term immunological memory has long been a trademark restricted to adaptive lymphocytes such as memory B cells and plasma cells as well as memory CD8(+) αß T cells. In recent years, innate lymphocytes such as NK cells have also been shown to adapt to their environment by antigen-specific expansion and selective survival. However, whether γδ T cells mount comparable memory responses to pathogenic stimuli is less well understood. In this issue of European Journal of Immunology, Hartwig et al. [Eur. J. Immunol. 2015. 45: 3022-3033] identify a subset of IL-17-producing γδ T cells that are capable of establishing long-lived memory in the skin of mice exposed to imiquimod in the Aldara psoriasis model. These γδ T cells uniformly express a Vγ4(+) Vδ4(+) TCR. They produce IL-17A/F and persist in the dermis for long periods of time, also at untreated distal sites. Upon secondary challenge, experienced Vγ4(+) Vδ4(+) cells show enhanced effector functions and mediate exacerbated secondary inflammation. These findings showcase innate γδ T-cell memory that uses a single conserved public TCR combination. Furthermore, they provide mechanistic insight to the observed psoriatic relapses in patients in response to topical treatment with imiquimod.


Asunto(s)
Memoria Inmunológica/inmunología , Psoriasis/inmunología , Piel/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales
19.
Front Immunol ; 15: 1386578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903500

RESUMEN

The immune memory is one of the defensive strategies developed by both unicellular and multicellular organisms for ensuring their integrity and functionality. While the immune memory of the vertebrate adaptive immune system (based on somatic recombination) is antigen-specific, encompassing the generation of memory T and B cells that only recognize/react to a specific antigen epitope, the capacity of vertebrate innate cells to remember past events is a mostly non-specific mechanism of adaptation. This "innate memory" can be considered as germline-encoded because its effector tools (such as innate receptors) do not need somatic recombination for being active. Also, in several organisms the memory-related information is integrated in the genome of germline cells and can be transmitted to the progeny for several generations, but it can also be erased depending on the environmental conditions. Overall, depending on the organism, its environment and its living habits, innate immune memory appears to be a mechanism for achieving better protection and survival against repeated exposure to microbes/stressful agents present in the same environment or occurring in the same anatomical district, able to adapt to changes in the environmental cues. The anatomical and functional complexity of the organism and its lifespan drive the generation of different immune memory mechanisms, for optimal adaptation to changes in the living/environmental conditions. The concept of innate immunity being non-specific needs to be revisited, as a wealth of evidence suggests a significant degree of specificity both in the primary immune reaction and in the ensuing memory-like responses. This is clearly evident in invertebrate metazoans, in which distinct scenarios can be observed, with both non-specific (immune enhancement) or specific (immune priming) memory-like responses. In the case of mammals, there is evidence that some degree of specificity can be attained in different situations, for instance as organ-specific protection rather than microorganism-specific reaction. Thus, depending on the challenges and conditions, innate memory can be non-specific or specific, can be integrated in the germline and transmitted to the progeny or be short-lived, thereby representing an exceptionally plastic mechanism of defensive adaptation for ensuring individual and species survival.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Animales , Humanos , Células Germinativas/inmunología , Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología
20.
Front Immunol ; 14: 1176982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313415

RESUMEN

In addition to circulating haemocytes, the immune system of the solitary ascidian Ciona robusta relies on two organs, the pharynx and the gut, and encompasses a wide array of immune and stress-related genes. How the pharynx and the gut of C. robusta react and adapt to environmental stress was assessed upon short or long exposure to hypoxia/starvation in the absence or in the presence of polystyrene nanoplastics. We show that the immune response to stress is very different between the two organs, suggesting an organ-specific immune adaptation to the environmental changes. Notably, the presence of nanoplastics appears to alter the gene modulation induced by hypoxia/starvation in both organs, resulting in a partial increase in gene up-regulation in the pharynx and a less evident response to stress in the gut. We have also assessed whether the hypoxia/starvation stress could induce innate memory, measured as gene expression in response to a subsequent challenge with the bacterial agent LPS. Exposure to stress one week before challenge induced a substantial change in the response to LPS, with a general decrease of gene expression in the pharynx and a strong increase in the gut. Co-exposure with nanoplastics only partially modulated the stress-induced memory response to LPS, without substantially changing the stress-dependent gene expression profile in either organ. Overall, the presence of nanoplastics in the marine environment seems able to decrease the immune response of C. robusta to stressful conditions, hypothetically implying a reduced capacity to adapt to environmental changes, but only partially affects the stress-dependent induction of innate memory and subsequent responses to infectious challenges.


Asunto(s)
Ciona intestinalis , Faringe , Animales , Ciona intestinalis/genética , Microplásticos , Lipopolisacáridos , Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA