Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(15): 6781-6792, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38560895

RESUMEN

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on Escherichia coli (E. coli) and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination (R2) greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log10 MPN/100 mL) for E. coli and -1.1 to 3.5 (log10 CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Ecosistema , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Combinación Trimetoprim y Sulfametoxazol , Farmacorresistencia Microbiana , Bacterias
2.
Environ Sci Technol ; 58(25): 10897-10909, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38843119

RESUMEN

Anthropogenic emissions, originating from human activities, stand as the primary contributors to PM2.5, which is recognized as a global health threat. The disease burden associated with PM2.5 has been extensively documented. However, the prevailing estimations have predominantly relied on PM2.5 exposure-response functions, neglecting the distinct risks posed by PM2.5 from various sources. China has experienced a significant reduction in the PM2.5 concentration due to stringent emission controls. With diverse sources and abundant mortality data, this situation provides a unique opportunity to estimate short-term source-specific attributable mortality. Our approach involves an integrated unequal health risk-oriented modeling in China, incorporating a source-oriented Community Multiscale Air Quality model, an adjustment and downscaling method for exposure measurement, a generalized linear model with random-effects meta-analysis, and premature mortality estimation. Adhering to the unequal health risk concept, we calculated the attributable mortality of multiple PM2.5 sources by determining the source risk-adjusted factor. In this study, we observed varying excess risks associated with multiple PM2.5 sources, with transportation-related PM2.5 exhibiting the most substantial association. An interquartile range increase (7.65 µg/m3) was linked to a 1.98% higher daily nonaccidental mortality. Residential use- and transportation-related PM2.5 emerged as the two principal sources of premature mortality. In 2018, a remarkable 53,381 avoiding deaths were estimated compared to 2013, and over 67% of these were attributed to reductions in coal-dependent sources. Notably, transportation-related PM2.5 emerged as the largest contributor to premature mortality in 2018. This study underscores the significance of a new source-oriented health risk assessment to support actions aimed at reducing air pollution. It strongly advocates for heightened attention to PM2.5 reductions in the transportation sector in China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , China/epidemiología , Humanos , Exposición a Riesgos Ambientales , Medición de Riesgo
3.
Biometrics ; 79(4): 3941-3953, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37443410

RESUMEN

Integrated models are a popular tool for analyzing species of conservation concern. Species of conservation concern are often monitored by multiple entities that generate several datasets. Individually, these datasets may be insufficient for guiding management due to low spatio-temporal resolution, biased sampling, or large observational uncertainty. Integrated models provide an approach for assimilating multiple datasets in a coherent framework that can compensate for these deficiencies. While conventional integrated models have been used to assimilate count data with surveys of survival, fecundity, and harvest, they can also assimilate ecological surveys that have differing spatio-temporal regions and observational uncertainties. Motivated by independent aerial and ground surveys of lesser prairie-chicken, we developed an integrated modeling approach that assimilates density estimates derived from surveys with distinct sources of observational error into a joint framework that provides shared inference on spatio-temporal trends. We model these data using a Bayesian Markov melding approach and apply several data augmentation strategies for efficient sampling. In a simulation study, we show that our integrated model improved predictive performance relative to models for analyzing the surveys independently. We use the integrated model to facilitate prediction of lesser prairie-chicken density at unsampled regions and perform a sensitivity analysis to quantify the inferential cost associated with reduced survey effort.


Asunto(s)
Animales Salvajes , Animales , Teorema de Bayes , Encuestas y Cuestionarios , Simulación por Computador , Incertidumbre
4.
Environ Sci Technol ; 57(12): 5056-5067, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36913650

RESUMEN

The large-scale adoption of low-carbon technologies can result in trade-offs between technical, socio-economic, and environmental aspects. To assess such trade-offs, discipline-specific models typically used in isolation need to be integrated to support decisions. Integrated modeling approaches, however, usually remain at the conceptual level, and operationalization efforts are lacking. Here, we propose an integrated model and framework to guide the assessment and engineering of technical, socio-economic, and environmental aspects of low-carbon technologies. The framework was tested with a case study of design strategies aimed to improve the material sustainability of electric vehicle batteries. The integrated model assesses the trade-offs between the costs, emissions, material criticality, and energy density of 20,736 unique material design options. The results show clear conflicts between energy density and the other indicators: i.e., energy density is reduced by more than 20% when the costs, emissions, or material criticality objectives are optimized. Finding optimal battery designs that balance between these objectives remains difficult but is essential to establishing a sustainable battery system. The results exemplify how the integrated model can be used as a decision support tool for researchers, companies, and policy makers to optimize low-carbon technology designs from various perspectives.


Asunto(s)
Suministros de Energía Eléctrica , Tecnología , Electricidad , Carbono
5.
Proc Natl Acad Sci U S A ; 116(9): 3624-3629, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808752

RESUMEN

Dengue is a climate-sensitive mosquito-borne disease with increasing geographic extent and human incidence. Although the climate-epidemic association and outbreak risks have been assessed using both statistical and mathematical models, local mosquito population dynamics have not been incorporated in a unified predictive framework. Here, we use mosquito surveillance data from 2005 to 2015 in China to integrate a generalized additive model of mosquito dynamics with a susceptible-infected-recovered (SIR) compartmental model of viral transmission to establish a predictive model linking climate and seasonal dengue risk. The findings illustrate that spatiotemporal dynamics of dengue are predictable from the local vector dynamics, which in turn, can be predicted by climate conditions. On the basis of the similar epidemiology and transmission cycles, we believe that this integrated approach and the finer mosquito surveillance data provide a framework that can be extended to predict outbreak risk of other mosquito-borne diseases as well as project dengue risk maps for future climate scenarios.


Asunto(s)
Virus del Dengue/patogenicidad , Dengue/epidemiología , Brotes de Enfermedades , Mosquitos Vectores/genética , Animales , China , Cambio Climático , Culicidae/patogenicidad , Culicidae/virología , Dengue/transmisión , Dengue/virología , Virus del Dengue/genética , Vectores de Enfermedades , Modelos Teóricos , Mosquitos Vectores/virología
6.
Environ Model Softw ; 135: 104885, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33041631

RESUMEN

System-of-systems approaches for integrated assessments have become prevalent in recent years. Such approaches integrate a variety of models from different disciplines and modeling paradigms to represent a socio-environmental (or social-ecological) system aiming to holistically inform policy and decision-making processes. Central to the system-of-systems approaches is the representation of systems in a multi-tier framework with nested scales. Current modeling paradigms, however, have disciplinary-specific lineage, leading to inconsistencies in the conceptualization and integration of socio-environmental systems. In this paper, a multidisciplinary team of researchers, from engineering, natural and social sciences, have come together to detail socio-technical practices and challenges that arise in the consideration of scale throughout the socio-environmental modeling process. We identify key paths forward, focused on explicit consideration of scale and uncertainty, strengthening interdisciplinary communication, and improvement of the documentation process. We call for a grand vision (and commensurate funding) for holistic system-of-systems research that engages researchers, stakeholders, and policy makers in a multi-tiered process for the co-creation of knowledge and solutions to major socio-environmental problems.

7.
J Biol Chem ; 294(44): 16385-16399, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31530639

RESUMEN

Bardet-Biedl syndrome (BBS) is a genetic disorder characterized by malfunctions in primary cilia resulting from mutations that disrupt the function of the BBSome, an 8-subunit complex that plays an important role in protein transport in primary cilia. To better understand the molecular basis of BBS, here we used an integrative structural modeling approach consisting of EM and chemical cross-linking coupled with MS analyses, to analyze the structure of a BBSome 2-7-9 subcomplex consisting of three homologous BBS proteins, BBS2, BBS7, and BBS9. The resulting molecular model revealed an overall structure that resembles a flattened triangle. We found that within this structure, BBS2 and BBS7 form a tight dimer through a coiled-coil interaction and that BBS9 associates with the dimer via an interaction with the α-helical domain of BBS2. Interestingly, a BBS-associated mutation of BBS2 (R632P) is located in its α-helical domain at the interface between BBS2 and BBS9, and binding experiments indicated that this mutation disrupts the BBS2-BBS9 interaction. This finding suggests that BBSome assembly is disrupted by the R632P substitution, providing molecular insights that may explain the etiology of BBS in individuals harboring this mutation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Cilios/metabolismo , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Microscopía Electrónica/métodos , Modelos Moleculares , Mutación
8.
Ecol Appl ; 30(5): e02114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129538

RESUMEN

Effective conservation and management of animal populations requires knowledge of abundance and trends. For many species, these quantities are estimated using systematic visual surveys. Additional individual-level data are available for some species. Integrated population modeling (IPM) offers a mechanism for leveraging these data sets into a single estimation framework. IPMs that incorporate both population- and individual-level data have previously been developed for birds, but have rarely been applied to cetaceans. Here, we explore how IPMs can be used to improve the assessment of cetacean populations. We combined three types of data that are typically available for cetaceans of conservation concern: population-level visual survey data, individual-level capture-recapture data, and data on anthropogenic mortality. We used this IPM to estimate the population dynamics of the Cook Inlet population of beluga whales (CIBW; Delphinapterus leucas) as a case study. Our state-space IPM included a population process model and three observational submodels: (1) a group detection model to describe group size estimates from aerial survey data; (2) a capture-recapture model to describe individual photographic capture-recapture data; and (3) a Poisson regression model to describe historical hunting data. The IPM produces biologically plausible estimates of population trajectories consistent with all three data sets. The estimated population growth rate since 2000 is less than expected for a recovering population. The estimated juvenile/adult survival rate is also low compared to other cetacean populations, indicating that low survival may be impeding recovery. This work demonstrates the value of integrating various data sources to assess cetacean populations and serves as an example of how multiple, imperfect data sets can be combined to improve our understanding of a population of interest. The model framework is applicable to other cetacean populations and to other taxa for which similar data types are available.


Asunto(s)
Ballena Beluga , Animales , Bahías , Dinámica Poblacional
9.
J Environ Manage ; 270: 110735, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721285

RESUMEN

Environmental decision-making requires an understanding of complex interacting systems across scales of space and time. A range of statistical methods, evaluation frameworks and modeling approaches have been applied for conducting structured environmental decision-making under uncertainty. Bayesian Decision Networks (BDNs) are a useful construct for addressing uncertainties in environmental decision-making. In this paper, we apply a BDN to decisions regarding fire management to evaluate the general efficacy and utility of the approach in resource and environmental decision-making. The study was undertaken in south-eastern Australia to examine decisions about prescribed burning rates and locations based on treatment and impact costs. Least-cost solutions were identified but are unlikely to be socially acceptable or practical within existing resources; however, the statistical approach allowed for the identification of alternative, more practical solutions. BDNs provided a transparent and effective method for a multi-criteria decision analysis of environmental management problems.


Asunto(s)
Incendios , Incendios Forestales , Teorema de Bayes , Toma de Decisiones , Australia del Sur , Incertidumbre
10.
Proc Natl Acad Sci U S A ; 112(27): 8505-10, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100881

RESUMEN

Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.


Asunto(s)
Acetona/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentación , Algoritmos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocombustibles , Clostridium acetobutylicum/genética , Simulación por Computador , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Modelos Biológicos
11.
J Environ Manage ; 213: 126-134, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29482093

RESUMEN

Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Hidrología , Idaho , Ríos
12.
J Environ Manage ; 225: 93-103, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30075307

RESUMEN

Energy and water systems are interdependent and have complex dynamic interactions with the socio-economic system and climate change. Few tools exist to aid decision-making regarding the management of water and energy resources at a watershed level. In this study, a Computable General Equilibrium (CGE) model and System Dynamics and Water Environmental Model (SyDWEM) were integrated (CGE-SyDWEM) to predict future energy use, CO2 emissions, economic growth, water resource stress, and water quality change in a rapidly urbanizing catchment in China. The effects of both the CO2 mitigation strategies and water engineering measures were evaluated. CO2 mitigation strategies have the potential to reduce 46% CO2 emissions and 41% energy use in 2025 compared with reference scenario. CO2 mitigation strategies are also found to be effective in promoting industrial structure adjustment by decreasing the output of energy- and water-intensive industries. Accordingly, it can alleviate local water stress and improve water environment, including a 4.1% reduction in both domestic water use and pollutant emissions, a 16.8% water demand reduction in the labor-intensive industry sector, and 4.2% and 4.4% decrease in BOD5 and NH3-N loads in all industrial sectors, respectively. It is necessary to implement water engineering measures to further alleviate water resource stress and improve water quality. This study improves the understanding of the feedbacks of CO2 abatement on water demand, pollutant discharges, and water quality improvement. The integrated model developed in this study can be used to aid energy, carbon, and water policy makers to understand the complicated synergistic effects of proposed CO2 mitigation strategies on water demand and pollution emissions, and to design more effective policies and measures to ensure energy and water security in the future.


Asunto(s)
Carbono , Cambio Climático , Recursos Hídricos , Dióxido de Carbono , China , Agua
13.
Environ Model Softw ; 87: 49-63, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36560980

RESUMEN

Integration of models requires linking models which can be developed using different tools, methodologies, and assumptions. We performed a literature review with the aim of improving our understanding of model integration process, and also presenting better strategies for building integrated modeling systems. We identified five different phases to characterize integration process: pre-integration assessment, preparation of models for integration, orchestration of models during simulation, data interoperability, and testing. Commonly, there is little reuse of existing frameworks beyond the development teams and not much sharing of science components across frameworks. We believe this must change to enable researchers and assessors to form complex workflows that leverage the current environmental science available. In this paper, we characterize the model integration process and compare integration practices of different groups. We highlight key strategies, features, standards, and practices that can be employed by developers to increase reuse and interoperability of science software components and systems.

14.
J Theor Biol ; 345: 12-21, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24361328

RESUMEN

We present two modifications of the flux balance analysis (FBA) metabolic modeling framework which relax implicit assumptions of the biomass reaction. Our flexible flux balance analysis (flexFBA) objective removes the fixed proportion between reactants, and can therefore produce a subset of biomass reactants. Our time-linked flux balance analysis (tFBA) simulation removes the fixed proportion between reactants and byproducts, and can therefore describe transitions between metabolic steady states. Used together, flexFBA and tFBA model a time scale shorter than the regulatory and growth steady state encoded by the biomass reaction. This combined short-time FBA method is intended for integrated modeling applications to enable detailed and dynamic depictions of microbial physiology such as whole-cell modeling. For example, when modeling Escherichia coli, it avoids artifacts caused by low-copy-number enzymes in single-cell models with kinetic bounds. Even outside integrated modeling contexts, the detailed predictions of flexFBA and tFBA complement existing FBA techniques. We show detailed metabolite production of in silico knockouts used to identify when correct essentiality predictions are made for the wrong reason.


Asunto(s)
Biomasa , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Animales , Simulación por Computador , Técnicas de Inactivación de Genes , Redes y Vías Metabólicas/genética
15.
Ambio ; 53(4): 579-591, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142243

RESUMEN

Our objective is to understand the effectiveness of local and international nutrient pollution mitigation efforts when targeting better water quality in the region's coastal waters. To this end, we developed an integrated modeling framework for the Archipelago Sea located in the Baltic Sea in Northern Europe, conducted what-if analyses for various ambition levels of nutrient abatement, and studied the long-term consequences at the sea basin scale. We demonstrate that in outer parts of the Archipelago Sea, a good eutrophication status can be achieved if the current internationally agreed policy goals for nutrient abatement are successfully met. In inner coastal areas, current goals for phytoplankton biomass could be reached only through extreme mitigation efforts in all polluting sectors and large-scale application of yet poorly tested ecological engineering methods. This result calls for carefully considering the relevance of current threshold values for phytoplankton and its role as a dominant indicator of good ecological status.


Asunto(s)
Eutrofización , Objetivos , Calidad del Agua , Europa (Continente) , Biomasa , Fitoplancton , Nitrógeno/análisis , Monitoreo del Ambiente/métodos
16.
Environ Pollut ; 356: 124345, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852664

RESUMEN

This study aims to present a comprehensive study on the risks associated with the residual presence and transport of Escherichia coli (E. coli) in soil following the application of livestock manure in Chinese farmlands by integrating machine learning algorithms with mechanism-based models (Phydrus). We initially review 28 published papers to gather data on E. coli's die-off and attachment characteristics in soil. Machine learning models, including deep learning and gradient boosting machine, are employed to predict key parameters such as the die-off rate of E. coli and first-order attachment coefficient in soil. Then, Phydrus was used to simulate E. coli transport and survival in 23692 subregions in China. The model considered regional differences in E. coli residual risk and transport, influenced by soil properties, soil depths, precipitation, seasonal variations, and regional disparities. The findings indicate higher residual risks in regions such as the Northeast China, Eastern Qinghai-Tibet Plateau, and pronounced transport risks in the fringe of the Sichuan Basin fringe, the Loess Plateau, the North China Plain, the Northeast Plain, the Shigatse Basin, and the Shangri-La region. The study also demonstrates a significant reduction in both residual and transport risks one month after manure application, highlighting the importance of timing manure application and implementing region-specific standards. This research contributes to the broader understanding of pathogen behavior in agricultural soils and offers practical guidelines for managing the risks associated with manure use. This study's comprehensive method offers a potentially valuable tool for evaluating microbial contaminants in agricultural soils across the globe.

17.
ISA Trans ; 146: 484-495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184411

RESUMEN

In alumina production, the evaporation as the key process uses recyclable resources and reduces environmental pollution. In fact, the quality of export product with offline and delayed, results in low precision of process control and high energy consumption. To ensure green and efficient production, in this paper, a new prediction method integrating process knowledge and data-driven spatial-temporal adaptive model is put forward. First, to preprocessed production data for ensuring modeling accuracy, data reconciliation technology is adopted. Then, based on material and heat transfer mechanism, for equipment and industrial process, the mechanism models are established. Furthermore, with time difference and moving window model, an error compensation method is utilized in terms of double locally weighted kernel PLS for estimation error in hypothesis-based mechanism modeling. Finally, the data-driven spatial-temporal adaptive model and the process knowledge-based mechanism model are integrated. To illustrate the model feasibility, an industrial sodium aluminate solution evaporation is used. It demonstrates that, for the developed model, the prediction accuracy can reach more than 90% within the ± 2% error range, and effectively estimate the actual product quality and ensure the prediction effect.

18.
Methods Mol Biol ; 2553: 173-187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227544

RESUMEN

To enable a more rational optimization approach to drive the transition from lab-scale to large industrial bioprocesses, a systematic framework coupling both experimental design and integrated modeling was established to guide the workflow executed from small flask scale to bioreactor scale. The integrated model relies on the coupling of biotic cell factory kinetics to the abiotic bioreactor hydrodynamics to offer a rational means for an in-depth understanding of two-way spatiotemporal interactions between cell behaviors and environmental variations. This model could serve as a promising tool to inform experimental work with reduced efforts via full-factorial in silico predictions. This chapter thus describes the general workflow involved in designing and applying this modeling approach to drive the experimental design towards rational bioprocess optimization.


Asunto(s)
Reactores Biológicos , Proyectos de Investigación , Hidrodinámica
19.
Sci Total Environ ; 803: 149894, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525756

RESUMEN

With the growing demand of assessing the ecological status, there is the need to fully understand the relationship between the planktic diversity and the environmental factors. Species richness and Shannon index have been widely used to describe the biodiversity of a community. Besides, we introduced the first ordination value from non-metric multidimensional scaling (NMDS) as a new index to represent the community similarity variance. In this study, we hypothesized that the variation of diatom community in rivers in an agricultural area was influenced by hydro-chemical variables. We collected daily mixed water samples using ISCO auto water samplers for diatoms and for water-chemistry analysis at the outlet of a lowland river for a consecutive year. An integrated modeling was adopted including random forest (RF) to decide the importance of the environmental factors influencing diatoms, generalized linear models (GLMs) combined with 10-folder cross validation to analyze and predict the diatom variation. The hierarchical analysis highlighted antecedent precipitation index (API) as the controlling hydrological variable while water temperature, Si2+ and PO4-P as the main chemical controlling factors in our study area. The generalized linear models performed better prediction for Shannon index (R2 = 0.44) and NMDS (R2 = 0.51) than diatom abundance (R2 = 0.25) and species richness (R2 = 0.25). Our findings confirmed that Shannon index and the NMDS as an index showed good performance in explaining the relationship between stream biota and its environmental factors and in predicting the diatom community development based on the hydro-chemical predictors. Our study showed and highlighted the important hydro-chemical factors in the agricultural rivers, which could contribute to the further understanding of predicting diatom community development and could be implemented in the future water management protocol.


Asunto(s)
Diatomeas , Biodiversidad , Monitoreo del Ambiente , Hidrología , Ríos
20.
Sci Total Environ ; 812: 151586, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793788

RESUMEN

Many recent studies have attributed the observed variability of cyanobacteria blooms to meteorological drivers and have projected blooms with worsening societal and ecological impacts under future climate scenarios. Nonetheless, few studies have jointly examined their sensitivity to projected changes in both precipitation and temperature variability. Using an Integrated Assessment Model (IAM) of Lake Champlain's eutrophic Missisquoi Bay, we demonstrate a factorial design approach for evaluating the sensitivity of concentrations of chlorophyll a (chl-a), a cyanobacteria surrogate, to global climate model-informed changes in the central tendency and variability of daily precipitation and air temperature. An Analysis of Variance (ANOVA) and multivariate contour plots highlight synergistic effects of these climatic changes on exceedances of the World Health Organization's moderate 50 µg/L concentration threshold for recreational contact. Although increased precipitation produces greater riverine total phosphorus loads, warmer and drier scenarios produce the most severe blooms due to the greater mobilization and cyanobacteria uptake of legacy phosphorus under these conditions. Increases in daily precipitation variability aggravate blooms most under warmer and wetter scenarios. Greater temperature variability raises exceedances under current air temperatures but reduces them under more severe warming when water temperatures exceed optimal values for cyanobacteria growth more often. Our experiments, controlled for wind-induced changes to lake water quality, signal the importance of larger summer runoff events for curtailing bloom growth through reductions of water temperature, sunlight penetration and stratification. Finally, the importance of sequences of wet and dry periods in generating cyanobacteria blooms motivates future research on bloom responses to changes in interannual climate persistence.


Asunto(s)
Cianobacterias , Eutrofización , Clorofila A , Lagos/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA