Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(2): 399-413.e12, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853215

RESUMEN

Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.


Asunto(s)
Regulación de la Temperatura Corporal/inmunología , Inmunidad Innata/fisiología , Inmunidad/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/inmunología , Metabolismo Energético/fisiología , Femenino , Tolerancia Inmunológica/inmunología , Tolerancia Inmunológica/fisiología , Masculino , Metabolismo/inmunología , Ratones , Ratones Endogámicos C57BL
2.
Biochem J ; 481(4): 295-312, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38372391

RESUMEN

Ketogenesis is considered to occur primarily in liver to generate ketones as an alternative energy source for non-hepatic tissues when glucose availability/utilization is impaired. 3-Hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2) mediates the rate-limiting step in this mitochondrial pathway. Publicly available databases show marked down-regulation of HMGCS2 in colonic tissues in Crohn's disease and ulcerative colitis. This led us to investigate the expression and function of this pathway in colon and its relevance to colonic inflammation in mice. Hmgcs2 is expressed in cecum and colon. As global deletion of Hmgcs2 showed significant postnatal mortality, we used a conditional knockout mouse with enzyme deletion restricted to intestinal tract. These mice had no postnatal mortality. Fasting blood ketones were lower in these mice, indicating contribution of colonic ketogenesis to circulating ketones. There was also evidence of gut barrier breakdown and increased susceptibility to experimental colitis with associated elevated levels of IL-6, IL-1ß, and TNF-α in circulation. Interestingly, many of these phenomena were mostly evident in male mice. Hmgcs2 expression in colon is controlled by colonic microbiota as evidenced from decreased expression in germ-free mice and antibiotic-treated conventional mice and from increased expression in a human colonic epithelial cell line upon treatment with aqueous extracts of cecal contents. Transcriptomic analysis of colonic epithelia from control mice and Hmgcs2-null mice indicated an essential role for colonic ketogenesis in the maintenance of optimal mitochondrial function, cholesterol homeostasis, and cell-cell tight-junction organization. These findings demonstrate a sex-dependent obligatory role for ketogenesis in protection against colonic inflammation in mice.


Asunto(s)
Colitis , Cetonas , Humanos , Ratones , Masculino , Animales , Cuerpos Cetónicos , Colitis/genética , Colitis/prevención & control , Colon , Inflamación , Ratones Endogámicos C57BL , Sulfato de Dextran
3.
Diabetologia ; 67(2): 346-355, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37971504

RESUMEN

AIMS/HYPOTHESIS: Pregnant women are advised to consume a minimum of 175 g per day of carbohydrate to meet maternal and fetal brain glucose requirements. This recommendation comes from a theoretical calculation of carbohydrate requirements in pregnancy, rather than from clinical data. This study aimed to determine whether fasting maternal ketone levels are associated with habitual carbohydrate intake in a subset of participants of the Study of PRobiotics IN Gestational diabetes (SPRING) randomised controlled trial. METHODS: Food frequency questionnaires on dietary intake during pregnancy were completed by pregnant women with overweight or obesity at 28 weeks' gestation (considering their intake from the beginning of pregnancy). Dietary intake from early pregnancy through to 28 weeks was analysed for macronutrient intake. At the same time, overnight fasting serum samples were obtained and analysed for metabolic parameters including serum ß-hydroxybutyrate, OGTTs, insulin and C-peptide. RESULTS: Fasting serum ß-hydroxybutyrate levels amongst 108 women (mean BMI 34.7 ± 6.3 kg/m2) ranged from 22.2 to 296.5 µmol/l. Median fasting ß-hydroxybutyrate levels were not different between women with high (median [IQR] 68.4 [49.1-109.2 µmol/l]) and low (65.4 [43.6-138.0 µmol/l]) carbohydrate intake in pregnancy. Fasting ß-hydroxybutyrate levels were not correlated with habitual carbohydrate intake (median 155 [126-189] g/day). The only metabolic parameter with which fasting ß-hydroxybutyrate levels were correlated was 1 h venous plasma glucose (ρ=0.23, p=0.03) during a 75 g OGTT. CONCLUSIONS/INTERPRETATION: Fasting serum ß-hydroxybutyrate levels are not associated with habitual carbohydrate intake at 28 weeks' gestation in pregnant women with overweight and obesity.


Asunto(s)
Diabetes Gestacional , Sobrepeso , Embarazo , Femenino , Humanos , Ácido 3-Hidroxibutírico , Mujeres Embarazadas , Obesidad , Glucosa , Carbohidratos , Glucemia/metabolismo
4.
Diabetologia ; 67(8): 1455-1479, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907161

RESUMEN

The American Diabetes Association (ADA), European Association for the Study of Diabetes (EASD), Joint British Diabetes Societies for Inpatient Care (JBDS), American Association of Clinical Endocrinology (AACE) and Diabetes Technology Society (DTS) convened a panel of internists and diabetologists to update the ADA consensus statement on hyperglycaemic crises in adults with diabetes, published in 2001 and last updated in 2009. The objective of this consensus report is to provide up-to-date knowledge about the epidemiology, pathophysiology, clinical presentation, and recommendations for the diagnosis, treatment and prevention of diabetic ketoacidosis (DKA) and hyperglycaemic hyperosmolar state (HHS) in adults. A systematic examination of publications since 2009 informed new recommendations. The target audience is the full spectrum of diabetes healthcare professionals and individuals with diabetes.


Asunto(s)
Cetoacidosis Diabética , Hiperglucemia , Humanos , Cetoacidosis Diabética/terapia , Cetoacidosis Diabética/epidemiología , Adulto , Consenso , Diabetes Mellitus/epidemiología , Coma Hiperglucémico Hiperosmolar no Cetósico/terapia
5.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381399

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Cuerpos Cetónicos/metabolismo , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Palmitatos/metabolismo
6.
Chembiochem ; : e202400712, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320950

RESUMEN

Esters are valuable aroma compounds and can be produced enzymatically by Baeyer-Villiger monooxygenases (BVMOs) from (aliphatic) ketone precursors. However, a genetically encoded biosensor system for the assessment of BVMO activity and the detection of reaction products is missing. In this work, we assembled a synthetic enzyme cascade - featuring an esterase, an alcohol dehydrogenase, and LuxAB - in the heterologous host Escherichia coli. Target esters are produced by a BVMO, subsequently cleaved, and the corresponding alcohol oxidized through the artificial pathway. Ultimately, aldehyde products are detected in vivo by LuxAB, a luciferase from Photorhabdus luminescens that emits bioluminescence upon the oxidation of aldehydes to the corresponding carboxylates. This biosensor system greatly accelerated the screening and selection of active BVMO variants from a focused library, omitting commonly used low-throughput chromatographic analysis. Engineered enzymes accepted linear aliphatic ketones such as 2-undecanone and 2-dodecanone and exhibited improved ester formation.

7.
Clin Exp Immunol ; 216(1): 89-103, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38195093

RESUMEN

Pre-clinical and cell culture evidence supports the role of the ketone beta-hydroxybutyrate (BHB) as an immunomodulatory molecule that may inhibit inflammatory signalling involved in several chronic diseases such as type 2 diabetes (T2D), but studies in humans are lacking. Therefore, we investigated the anti-inflammatory effect of BHB in humans across three clinical trials. To investigate if BHB suppressed pro-inflammatory cytokine secretion, we treated LPS-stimulated leukocytes from overnight-fasted adults at risk for T2D with BHB (Study 1). Next (Study 2), we investigated if exogenously raising BHB acutely in vivo by ketone monoester supplementation (KME) in adults with T2D would suppress pro-inflammatory plasma cytokines. In Study 3, we investigated the effect of BHB on inflammation via ex vivo treatment of LPS-stimulated leukocytes with BHB and in vivo thrice-daily pre-meal KME for 14 days in adults with T2D. Ex vivo treatment with BHB suppressed LPS-stimulated IL-1ß, TNF-α, and IL-6 secretion and increased IL-1RA and IL-10 (Study 1). Plasma IL-10 increased by 90 min following ingestion of a single dose of KME in T2D, which corresponded to peak blood BHB (Study 2). Finally, 14 days of thrice-daily KME ingestion did not significantly alter plasma cytokines or leukocyte subsets including monocyte and T-cell polarization (Study 3). However, direct treatment of leukocytes with BHB modulated TNF-α, IL-1ß, IFN-γ, and MCP-1 secretion in a time- and glucose-dependent manner (Study 3). Therefore, BHB appears to be anti-inflammatory in T2D, but this effect is transient and is modulated by the presence of disease, glycaemia, and exposure time.


Asunto(s)
Diabetes Mellitus Tipo 2 , Interleucina-10 , Adulto , Humanos , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cetonas/uso terapéutico , Factor de Necrosis Tumoral alfa , Lipopolisacáridos , Inflamación/tratamiento farmacológico , Citocinas , Antiinflamatorios/uso terapéutico , Interleucina-1beta , Inmunidad
8.
Chemistry ; 30(46): e202401841, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38853149

RESUMEN

A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.

9.
Chemistry ; 30(27): e202400355, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38411601

RESUMEN

This concept review describes the recent achievements on the Heyns rearrangement appeared in literature over the last decade and aims to provide the reader with a general overview of the fundamental synthetic advances in this research area.

10.
Chemistry ; 30(18): e202303854, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38183331

RESUMEN

Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.

11.
Chemistry ; 30(6): e202302904, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37936501

RESUMEN

A highly enantioselective Mannich reaction of biphenyl-bridged seven-membered cyclic N-sulfonylimines with methyl alkyl ketones is disclosed in this study. The reaction was performed under organocatalysis by using a quinine-derived primary amine as the catalyst in combination with a Brønsted acid as the co-catalyst. High yields (up to 89 %) and excellent enantioselectivities (up to 97 % ee) were observed. For methyl alkyl ketones containing a larger alkyl substituent, specific regioselective addition to the C=N bond is favored at the methyl group. On the contrary, ketones containing a smaller alkyl substituent or hydroxyacetone substrates gave major syn selective Mannich products at the methylene group.

12.
Chemistry ; 30(11): e202303626, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37997552

RESUMEN

Mono α-acylation of acetone has been achieved for the first time by reacting with bench-stable acyl azolium salts under violet-LED light at room temperature. The intermolecular hydrogen atom transfer (HAT) from acetone to triplet state of azolium salts under violet LED irradiation resulted in thermodynamically less favourable (Z)-α,ß-unsaturated ketones with up to 99 : 1 selectivity via C-C bond formation. This compelling protocol access the desired α-C(sp3 )-H acylation product under metal-, ligand- and oxidant-free conditions on a wide range of substrates.

13.
Diabet Med ; 41(9): e15372, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38853420

RESUMEN

AIM: To determine whether it was feasible, safe and acceptable for ambulance clinicians to use capillary blood ketone meters for 'high-risk' diabetic ketoacidosis (DKA) recognition and fluid initiation, to inform the need for a full-powered, multi-centre trial. METHODS: Adopting a stepped-wedge controlled design, participants with hyperglycaemia (capillary blood glucose >11.0 mmol/L) or diabetes and unwell were recruited. 'High-risk' DKA intervention participants (capillary blood ketones ≥3.0 mmol/L) received paramedic-led fluid therapy. Participant demographic and clinical data were collated from ambulance and hospital care records. Twenty ambulance and Emergency Department clinicians were interviewed to understand their hyperglycaemia and DKA care experiences. RESULTS: In this study, 388 participants were recruited (Control: n = 203; Intervention: n = 185). Most presented with hyperglycaemia, and incidence of type 1 and type 2 diabetes was 18.5% and 74.3%, respectively. Ketone meter use facilitated 'high-risk' DKA identification (control: 2.5%, n = 5; intervention: 6.5%, n = 12) and was associated with improved hospital pre-alerting. Ambulance clinicians appeared to have a high index of suspicion for hospital-diagnosed DKA participants. One third (33.3%; n = 3) of Control and almost half (45.5%; n = 5) of Intervention DKA participants received pre-hospital fluid therapy. Key interview themes included clinical assessment, ambulance DKA fluid therapy, clinical handovers; decision support tool; hospital DKA management; barriers to hospital DKA care. CONCLUSIONS: Ambulance capillary blood ketone meter use was deemed feasible, safe and acceptable. Opportunities for improved clinical decision making, support and safety-netting, as well as in-hospital DKA care, were recognised. As participant recruitment was below progression threshold, it is recommended that future-related research considers alternative trial designs. CLINICALTRIALS: gov: NCT04940897.


Asunto(s)
Ambulancias , Cetoacidosis Diabética , Hiperglucemia , Cetonas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glucemia/análisis , Glucemia/metabolismo , Capilares , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Cetoacidosis Diabética/terapia , Cetoacidosis Diabética/sangre , Cetoacidosis Diabética/diagnóstico , Servicios Médicos de Urgencia/métodos , Servicio de Urgencia en Hospital , Estudios de Factibilidad , Fluidoterapia/métodos , Hiperglucemia/sangre , Hiperglucemia/diagnóstico , Hiperglucemia/terapia , Cetonas/sangre , Adolescente , Adulto Joven , Anciano de 80 o más Años
14.
Exp Physiol ; 109(10): 1768-1781, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39190570

RESUMEN

Acute ingestion of exogenous ketone supplements in the form of a (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-ßHB) ketone monoester (KME) can attenuate declines in oxygen availability during hypoxic exposure and might impact cognitive performance at rest and in response to moderate-intensity exercise. In a single-blind randomized crossover design, 16 males performed assessments of cognitive performance before and during hypoxic exposure with moderate exercise [2 × 20 min weighted ruck (∼22 kg) at 3.2 km/h at 10% incline] in a normobaric altitude chamber (4572 m, 11.8% O2). The R-BD R-ßHB KME (573 mg/kg) or a calorie- and taste-matched placebo (∼50 g maltodextrin) were co-ingested with 40 g of dextrose before exposure to hypoxia. The R-ßHB concentrations were rapidly elevated and sustained (>3 mM; P < 0.001) by KME. The decline in oxygen saturation during hypoxic exposure was attenuated in KME conditions by 2.4%-4.2% (P < 0.05) compared with placebo. Outcomes of cognitive performance tasks, in the form of the Defense Automated Neurobehavioral Assessment (DANA) code substitution task, the Stroop color and word task, and a shooting simulation, did not differ between trials before and during hypoxic exposure. These data suggest that the acute exogenous ketosis induced by KME ingestion can attenuate declining blood oxygen saturation during acute hypoxic exposure both at rest and during moderate-intensity exercise, but this did not translate into differences in cognitive performance before or after exercise in the conditions investigated.


Asunto(s)
Cognición , Estudios Cruzados , Ejercicio Físico , Hipoxia , Humanos , Masculino , Cognición/efectos de los fármacos , Cognición/fisiología , Ejercicio Físico/fisiología , Hipoxia/fisiopatología , Hipoxia/metabolismo , Adulto , Método Simple Ciego , Adulto Joven , Cetonas , Oxígeno/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/sangre , Saturación de Oxígeno/efectos de los fármacos , Altitud , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/fisiología
15.
Bioorg Med Chem Lett ; 113: 129964, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284455

RESUMEN

Although difluoromethyl ketones are used as tools in chemical biology and leads in drug discovery, the metabolic stability of these compounds is generally uncharacterized and must be inferred from in vivo pharmacological assays. In order to address this gap which impedes their wider use, we have synthesized and performed metabolic stability studies for thirty-nine ß-amino and ß-hydroxy difluoromethyl ketones. These investigations provide structure-stability relationships of the difluoromethyl ketones following incubation with rodent serum and liver microsomes.

16.
Environ Sci Technol ; 58(36): 16066-16075, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177446

RESUMEN

Carbonyls have previously been dismissed as significant precursors for carbon monoxide (CO) photoproduction from natural chromophoric dissolved organic matter (CDOM). Here, we used hydrogen cyanide (HCN), which reacts with carbonyls to form photochemically inert cyanohydrins, as a probe to re-examine the role of carbonyls in CO photoproduction. Adding HCN to low-absorbance euphotic zone seawater decreased CO photoproduction. Modeling [HCN] (∼5 to 364 µM) vs the percent decrease in CO photoproduction (%CO↓) yielded carbonyl-cyanohydrin dissociation equilibrium constants, KD, and maximum %CO↓, %CO↓max values. Four Atlantic and Pacific seawater KDs (66.7 ± 19.6 µM) overlap aqueous aliphatic but not aromatic aldehyde KDs. Phenylacetaldehyde (PA) and other ß,γ-unsaturated aldehydes are proposed as prototypical CO precursors. Direct photolysis of ∼10 nM PA can supply the measured daily production of HCN-sensitive CO at an open-ocean site near Bermuda. HCN's %CO↓max was 31 ± 2.5% in North Atlantic seawater vs the 13 ± 2.5% inhibition of CO photoproduction by borohydride, a dilemma since only borohydride affects most ketones. Borohydride also decreased CDOM absorption much more than did HCN. This puzzle probably reflects differing steric and solvation requirements in HCN- and borohydride-CDOM reactions. This study demonstrates cyanophilic aldehydes to be a significant source of open-ocean CO and reveals new clues regarding CDOM photochemistry mechanisms.


Asunto(s)
Aldehídos , Monóxido de Carbono , Agua de Mar , Aldehídos/química , Monóxido de Carbono/química , Agua de Mar/química , Cianuro de Hidrógeno/química , Nitrilos/química
17.
J Pharm Pharm Sci ; 27: 13210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988822

RESUMEN

Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Macrófagos , Obesidad , Humanos , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Animales , Resistencia a la Insulina , Metabolismo Energético
18.
Chirality ; 36(4): e23660, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511944

RESUMEN

A green and efficient process for the synthesis of cenobamate has been accomplished in 70% yield and >99% ee through the bio-reduction of ß-ketotetrazole using Daucus carota whole plant cells. The corresponding ß-hydroxytetrazole was isolated in 60% yield and >98% ee. This is the first report on the biocatalytic reduction of ß-ketotetrazole using plant enzymes derived from D. carota root cells with excellent enantioselectivity.


Asunto(s)
Anticonvulsivantes , Carbamatos , Clorofenoles , Cetonas , Tetrazoles , Estereoisomerismo , Biocatálisis
19.
Gen Comp Endocrinol ; 350: 114470, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346454

RESUMEN

Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of ß-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.


Asunto(s)
Squalus acanthias , Squalus , Animales , Squalus/metabolismo , Squalus acanthias/metabolismo , Cetonas/metabolismo , Cetonas/farmacología , Glucosa/metabolismo , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología
20.
Arch Toxicol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225796

RESUMEN

Many people convicted for drunken driving suffer from an alcohol use disorder and some traffic offenders consume denatured alcohol for intoxication purposes. Venous blood samples from people arrested for driving under the influence of alcohol were analyzed in triplicate by headspace gas chromatography (HS-GC) using three different stationary phases. The gas chromatograms from this analysis sometimes showed peaks with retention times corresponding to acetone, ethyl methyl ketone (2-butanone), 2-propanol, and 2-butanol in addition to ethanol and the internal standard (1-propanol). Further investigations showed that these drink-driving suspects had consumed an industrial alcohol (T-Red) for intoxication purposes, which contained > 90% w/v ethanol, acetone (~ 2% w/v), 2-butanone (~ 5% w/v) as well as Bitrex to impart a bitter taste. In n = 75 blood samples from drinkers of T-Red, median concentrations of ethanol, acetone, 2-butanone, 2-propanol and 2-butanol were 2050 mg/L (2.05 g/L), 97 mg/L, 48 mg/L, 26 mg/L and 20 mg/L, respectively. In a separate GC analysis, 2,3-butanediol (median concentration 87 mg/L) was identified in blood samples containing 2-butanone. When the redox state of the liver is shifted to a more reduced potential (excess NADH), which occurs during metabolism of ethanol, this favors the reduction of low molecular ketones into secondary alcohols via the alcohol dehydrogenase (ADH) pathway. Routine toxicological analysis of blood samples from apprehended drivers gave the opportunity to study metabolism of acetone and 2-butanone without having to administer these substances to human volunteers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA