Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422439

RESUMEN

Phaseolus vulgaris Linn. is a widely cultivated vegetable throughout the world. From spring 2019 to 2022, green mould symptoms were observed on leaves of P. vulgaris in the greenhouse in Liaoning, China, with disease incidence of 8-75% (plants) and 6-23% (leaves). Symptoms appeared as chlorotic lesions covered with dark green mould. The infections started at the apex or margin of the leaves and then spread inward with a characteristic "V" shape. Lesions exhibited curly morphology. 15 leaf samples with typical symptoms were collected from 5 different greenhouses. A total of 75 (5 replicates of each sample) leaf tissues (0.5 cm × 0.5 cm) were selected from the boundary between diseased and healthy parts. These samples were surface sterilized in 0.5% NaClO formin, rinsed 3 times in sterile distilled water and subsequently incubated at 28℃ on potato dextrose agar (PDA) supplemented with streptomycin (50 µg/ml). Numerous morphologically uniform colonies had been purified, with no other fungi observed. Afterwards, the strains were subcultured on malt extract agar (MEA). Colonies on MEA reached 70 to 80 mm diam after 14 days, smoke-grey to pale olivaceous-grey, woolly, sometimes radially wrinkled. The mycelia were pale olivaceous-grey, with hyphae measuring 1-5 µm wide (n = 20). The conidiophores were solitary or in groups of 2 to 5, and measured 50-280(-350) × 2.5-4 µm (n = 20), with 2-7 septa. The conidiogenous cells exhibited a cylindrical-oblong morphology and measured 10-44 × 5 µm (n = 20), with 0-2 septa, and the loci frequently thickened. The conidia were catenate in densely branched chains, ellipsoid to obovoid, smooth, and measured 2.5-5 × 2-3 µm (n = 50), with 0-4 septa. The morphological characteristics were similar to Cladosporium tenuissimum (Zhang 2003). The representative isolate KZ-19 was selected for molecular identification. The rDNA-ITS, translation elongation factor 1-α and actin genes were amplified, sequenced, and the resulting sequence data were submitted to GenBank (ITS: OQ931048; EF-1α: OQ954495; ACT: OQ954496). The BLAST results exhibited a 99 to 100% similarity with the sequences of C. tenuissimum type strain CBS 125995(ITS: HM148197; EF-1α: HM148442; ACT: HM148687). Furthermore, a multi-locus phylogenetic tree was constructed using the PhyloSuite (v 1. 2. 2) software, which revealed that the strains were most closely related to C. tenuissimum (Zhang et al. 2020). Based on both morphological and molecular characteristics, KZ-19 was finally identified as C. tenuissimum (Bensch 2012). Pathogenicity testing was performed on healthy 1-month-old P. vulgaris plants by inoculating the spore suspension (1×106 conidia/ml) of KZ-19 onto leaf surfaces, while control plants were simulated inoculated with sterile water, and five pots were used for each treatment. The test was performed under field conditions of 16-28°C (temperature) and 24-56% (relative humidity). Chlorotic lesions became evident within 2 days of inoculation, followed by the appearance of green mold on leaves after 7 days. No symptoms were observed in the control group. To fulfill Koch's postulates, the pathogen was re-isolated from three inoculated leaves. The morphological identification of re-isolated pathogens was similar to that of originally isolated pathogens. No infection was observed in non-inoculated control. To the best of our knowledge, this is the first report of C. tenuissimum causing green mould on P. vulgaris. As a ubiquitous saprobic hyphomycete, C. tenuissimum has been implicated in leaf mold in Punica granatum and Trifolium repens, larch bud blight, and strawberry blossom blight in previous years (He et al. 1987; Zhang et al. 2003; Zheng et al. 2010; Nam et al. 2015), presenting a potential threat to numerous crops. Therefore, an investigation of its distribution and pathogenic potential is essential in addition to the development of effective disease management strategies.

2.
Molecules ; 29(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38999174

RESUMEN

This study investigated a novel probiotic-enriched ice cream containing fermented white kidney bean homogenate to explore its potential health benefits in the future. We assessed the viability of various probiotic strains during ice cream production and storage, focusing on their potential to reach the gut, and evaluated overall antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and total polyphenol content (TPC) assays. The incorporation of fermented white bean homogenate significantly increased antioxidant capacity compared to the control group. Notably, strains such as Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum 299v demonstrated the most pronounced effects on antioxidant activity, suggesting potential synergistic benefits between probiotics and bioactive compounds in fermented white beans. Although all probiotic strains experienced decreased viability during storage, certain strains, particularly L. plantarum 299v and Lacticaseibacillus casei DN-114001, showed promising survival rates even after 6 months. These results suggest the potential for developing probiotic ice cream containing viable bacteria capable of reaching the gut and contributing to a healthy gut microbiota. Overall, this study highlights the potential of probiotic-enriched ice cream with fermented white kidney bean homogenate to combine the established benefits of probiotics for gut health with the enjoyment of consuming ice cream.


Asunto(s)
Antioxidantes , Fermentación , Helados , Probióticos , Antioxidantes/farmacología , Antioxidantes/química , Helados/microbiología , Phaseolus/química , Polifenoles/química , Polifenoles/farmacología , Viabilidad Microbiana/efectos de los fármacos
3.
J Nutr ; 153(10): 2979-2984, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37482123

RESUMEN

BACKGROUND: Protein quality of the red kidney bean (RKB), a common source of dietary protein, has been assessed using the protein digestibility-corrected amino acid score (PDCAAS) determined in animal models using mainly oro-fecal digestibility. More recently, the FAO recommended to use digestible indispensable amino acid score (DIAAS) instead of PDCAAS but highlighted insufficient data on true ileal indispensable amino acid (IAA) digestibility of proteins because amino acids are absorbed in the ileum. OBJECTIVES: Using a recently developed dual stable isotope tracer method, we aimed to measure each IAA digestibility as representation of true ileal digestibility of the RKB, Phaseolus vulgaris, in humans consuming a typical Jamaican meal. METHODS: RKB-IAAs were intrinsically labeled by adding 2H2O to the plants. Uniformly labeled-[13C]-spirulina (standard protein) was added to a meal prepared with the labeled RKB and fed to 10 healthy adults (5 males, 5 females) in a nonrandomized trial as primed/intermittent doses to achieve a steady state IAA enrichment in plasma. Enrichment of 2H- and 13C-labeled IAA in plasma and the bean was measured by mass spectrometry. Each IAA digestibility (except tryptophan and histidine) was calculated as the ratio of plasma 2H-IAA to meal 2H-IAA divided by the ratio of plasma 13C-IAA to meal 13C-IAA adjusted for loss of 2H-atom during transamination and digestibility of spirulina. RESULTS: Adequate IAA labeling (>1000 ppm 2H excess) and plasma plateau isotopic enrichment were achieved. Mean RKB-IAA digestibility (%) was 79.4 ± 0.5, ranging from 69.0 ± 1.2 (threonine) to 85.7 ± 1.7 (lysine). CONCLUSION: The dual stable isotope tracer digestibility data are similar to published oro-fecal digestibility supporting substantial nitrogen exchange in the colon. The individual IAA digestibility is useful to derive DIAAS to replace PDCAAS. Using published RKB-IAA composition, extrapolated DIAAS was 0.63 based on the lowest score for methionine. CLINICAL TRIAL REGISTRATION: https://register. CLINICALTRIALS: gov; ID: NCT-04118517.

4.
J Insect Sci ; 23(2)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052364

RESUMEN

Western flower thrips (WFTs), Frankliniella occidentalis (Thysanoptera, Thripidae), is one of the most serious pests that attack rose flowers. Little is known about the effect of different parts of the rose flower on nutritional contents and digestive enzyme activities in thrips. This study assessed variations in the nutritional contents and digestive enzyme activities in the second-instar larvae and adults WFTs fed on 3 food types (rose petals, rose flowers, and honey solution + kidney bean pods) for multiple generations. The highest contents of soluble sugar (in 10% honey solution + kidney bean pods), amino acid (in rose flowers), and protein (in rose flowers) were observed, respectively. Soluble sugar and protein contents in the second-instar larvae and adults fed on rose petals decreased in the F1 generation but increased in the F2 generation and remained at higher levels until the F7 generation. Feeding of thrips with 3 food types increased the lipid content in the F1 generation, which peaked in the F2 generation and remained high until the F7 generation. In most cases, α-amylase and trypsin activities significantly decreased in the F1 generation after feeding on rose petals and then prominently increased in the F2 generation. In contrast, chymotrypsin activity remarkably increased and peaked in the F1 generation after second-instar larvae thrips fed on rose petals. There were correlations among the contents of 3 nutrient related positively with the activities of α-amylase and trypsin in WFTs second-instar larvae and adults, respectively. Overall, variations in the nutrient properties of the 3 food types caused changes in nutrient contents and digestive enzyme activities in thrips.


Asunto(s)
Thysanoptera , Animales , Tripsina , Flores , Larva , Azúcares , Nutrientes , alfa-Amilasas , Valor Nutritivo , Digestión
5.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887369

RESUMEN

Carbonaceous materials derived from biomass have been used as sustainable platforms for the growth of ZnO particles aiming the production of functional composite fillers. Kidney-bean pods were pyrolyzed by applying an experimental design that demonstrates that the specific surface area (SBET) of biochar is improved with increasing pyrolysis temperature combined with a short air-oxidation time. Meanwhile, the graphitization degree and the electrical conductivity (EC) of biochars were negatively affected by increasing the air-oxidation time. The biochar sample with the higher EC and the one with the higher SBET were selected to be functionalized with ZnO particles by a solvothermal methodology, obtaining composites with an EC and SBET properties superior to the ZnO-rGO composite, in addition to a similar antibacterial activity. The developed ZnO-biochar composite structures, which are more ecological and biocompatible than the ZnO composites derived from graphene sheets, can be applied as electrically conductive and active fillers.


Asunto(s)
Antiinfecciosos , Eliminación de Residuos , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Carbón Orgánico/química , Conductividad Eléctrica , Alimentos , Óxido de Zinc/química
6.
Molecules ; 27(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566136

RESUMEN

Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1ß, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.


Asunto(s)
Hiperlipidemias , Pancreatitis , Phaseolus , Enfermedad Aguda , Animales , Defensinas/farmacología , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Mucosa Intestinal/metabolismo , Pancreatitis/tratamiento farmacológico , Pancreatitis/etiología , Ratas , Almidón Resistente
7.
Childs Nerv Syst ; 37(10): 3265-3269, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33660104

RESUMEN

Juvenile xanthogranuloma (JXG) is a type of non-Langerhans cell histiocytosis that most commonly manifests as a solitary cutaneous lesion of the head and neck in children. Intracranial JXG is extremely rare. Although it is widely known that JXG skin lesions gradually disappear over time without treatment, treatment guidelines for intracranial JXG have not been established. It is very difficult to predict whether an intracranial lesion is JXG with only a pre-operative imaging work-up without pathologic confirmation. We report a case of the youngest, a 3-month-old male infant with an intracranial extra-axial mass with rapid growth for 2 months. Additionally, we suggest characteristic MRI findings for intracranial extra-axial JXG of a low T2 signal and a kidney bean shape.


Asunto(s)
Xantogranuloma Juvenil , Cabeza , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Xantogranuloma Juvenil/diagnóstico por imagen , Xantogranuloma Juvenil/cirugía
8.
J Food Sci Technol ; 58(6): 2178-2185, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33967315

RESUMEN

This study was aimed to synthesize and evaluate the nano starch-based composite films by the addition of nano starch in film formulation at 0.5, 1, 2, 5 and 10% level of total starch. The acid hydrolysis technique was used to reduce the size of starch granules of kidney bean starch. The physicochemical properties of both native and nano starch were determined. Nano starch showed a higher value for swelling power, solubility, water and oil absorption capacity when compared with native starch. The particle size of kidney bean nano starch was 257.7 nm at 100% intensity. The size of starch granule affects various properties of films. The thickness, solubility and burst strength of the composite films were increased significantly (p ≤ 0.05) with an increase in the concentration of nano starch in film formulation. While the moisture content and water vapour transmission rate (WVTR) were decreased significantly (p ≤ 0.05) with an increase in the concentration of nano starch in film formulation. The results suggested that kidney bean starch could be used for the development of packaging films. The utilization of nano starch in film formulations had an additional advantage in improving the film properties.

10.
J Sci Food Agric ; 98(13): 5095-5104, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29604085

RESUMEN

BACKGROUND: Organophosphate and carbamate pesticide residues in food and the environment pose a great threat to human health and have made the easy and rapid detection of these pesticide residues an important task. Discovering new enzyme sources from plants can help reduce the cost of large-scale applications of rapid pesticide detection via enzyme inhibition. RESULTS: Plant esterase from kidney beans was purified. Kidney bean esterase is identified as a carboxylesterase by substrate and inhibitor specificity tests and mass spectrometry identification. The kidney bean esterase demonstrates optimal catalytic activity at 40 °C, pH 6.5 and an enzyme concentration of 0.30 µg mL-1 . The kidney bean esterase can be inhibited by organophosphate and carbamate pesticides, which can be substituted for acetylcholinesterase. The limit of detection of the purified kidney bean esterase was two- to 20-fold higher than that of the crude one. The method detection limit meets the detection requirement for the maximum residue limits (MRL) in actual samples. CONCLUSION: The findings of the present study provide a new source of enzymes for pesticides detection by enzyme inhibition. © 2018 Society of Chemical Industry.


Asunto(s)
Carbamatos/química , Carboxilesterasa/química , Organofosfatos/química , Plaguicidas/química , Phaseolus/enzimología , Proteínas de Plantas/química , Biocatálisis , Carboxilesterasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Phaseolus/química , Proteínas de Plantas/antagonistas & inhibidores
11.
J Food Sci Technol ; 55(12): 4937-4944, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30482989

RESUMEN

Legumes and cereals complement their nutritional quality and there is a need of convenience products made with these grains. The objectives of this study were to determine the rheological and functional properties of precooked red kidney bean (RKB) flours and their effect on viscoelastic properties of gluten free cake batter and cupcake quality including consumer acceptance. RKB flours were thermally processed by boiling at 100 °C (0, 20, 30 and 40 min) and drying at 80 °C (3 and 4 h). Rheological properties of cake batter containing 100% RKB flour were tested by creep-recovery and dynamic frequency tests. Batter of RKB flour boiled for 20 min was significantly stiffer with 100 times less deformable character compared to the control. Increase in batter modulus ranged from 2000 times elastic component (G'), 988 times viscous component (G″) and 1805 times complex viscosity (η*) at 20 min boiling. Drying did not have a significant effect on viscoelastic properties. Firmness and height of gluten free RKB cupcake were not affected by heat treatment. RKB gluten free cake after heat-moisture treatment had improved consumer acceptance scores compared to the control. Our findings showed that 20 min boiling and 3 h drying process is adequate for precooked RKB flour.

14.
Ann Bot ; 114(5): 937-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100676

RESUMEN

BACKGROUND AND AIMS: Considerable variation in seed size commonly exists within plants, and is believed to be favoured under natural selection. This study aims to examine the extent to which seed size distribution depends on the presence of competing neighbour plants. METHODS: Phaseolus vulgaris plants rooting with or without a conspecific neighbour were grown in soil with high or low nutrient availability. Seeds were harvested at the end of the growth cycle, the total nitrogen and phosphorus invested in seed production were measured and within-plant seed size distribution was quantified using a set of statistical descriptors. KEY RESULTS: Exposure to neighbours' roots induced significant changes in seed size distribution. Plants produced proportionally more large seeds and fewer small ones, as reflected by significant increases in minimal seed size, mean seed size, skewness and Lorenz asymmetry coefficient. These effects were different from, and in several cases opposite to, the responses when the soil nutrient level was reduced, and were significant after correction for the amount of resources invested in seed production. CONCLUSIONS: Below-ground neighbour presence affects within-plant seed size distribution in P. vulgaris. This effect appears to be non-resource-mediated, i.e. to be independent of neighbour-induced effects on resource availability. It implies that, based on current environmental cues, plants can make an anticipatory adjustment of their investment strategy in offspring as an adaptation to the local environment in the future.


Asunto(s)
Nitrógeno/metabolismo , Phaseolus/fisiología , Fósforo/metabolismo , Raíces de Plantas/fisiología , Semillas/fisiología , Biomasa , Modelos Biológicos , Phaseolus/crecimiento & desarrollo , Dispersión de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Suelo
15.
Breed Sci ; 64(4): 404-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25914596

RESUMEN

The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, 'Oofuku', is resistant to SbDV-YS in inoculation tests. We crossed 'Oofuku' with an elite cultivar, 'Taisho-Kintoki', which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed 'Toiku-B79' and 'Toiku-B80', the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of 'Taisho-Kintoki'. The NILs had similar growth habit, maturity date and seed shape to those of 'Taisho-Kintoki'. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than 'Taisho-Kintoki'. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.

16.
Int J Biol Macromol ; 275(Pt 2): 133731, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986978

RESUMEN

l-asparaginases play a crucial role in the treatment of acute lymphoblastic leukemia (ALL), a type of cancer that mostly affects children and teenagers. However, it is common for these molecules to cause adverse reactions during treatment. These downsides ignite the search for novel asparaginases to mitigate these problems. Thus, this work aimed to produce and characterize a recombinant asparaginase from Phaseolus vulgaris (Asp-P). In this study, Asp-P was expressed in Escherichia coli with high yields and optimum activity at 40 °C, pH 9.0. The enzyme Km and Vmax values were 7.05 mM and 1027 U/mg, respectively. Asp-P is specific for l-asparagine, showing no activity against l-glutamine and other amino acids. The enzyme showed a higher cytotoxic effect against Raji than K562 cell lines, but only at high concentrations. In silico analysis indicated that Asp-P has lower immunogenicity than a commercial enzyme. Asp-P induced biofilm formation by Candida sp. due to sublethal dose, showing an underexplored potential of asparaginases. The absence of glutaminase activity, lower immunogenicity and optimal activity similar to physiological temperature conditions are characteristics that indicate Asp-P as a potential new commercial enzyme in the treatment of ALL and its underexplored application in the treatment of other diseases.


Asunto(s)
Asparaginasa , Phaseolus , Proteínas Recombinantes , Asparaginasa/química , Asparaginasa/farmacología , Asparaginasa/genética , Asparaginasa/inmunología , Phaseolus/química , Humanos , Cinética , Proteínas Recombinantes/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Leucemia/tratamiento farmacológico , Células K562 , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Temperatura
17.
Int J Biol Macromol ; 278(Pt 4): 135009, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181371

RESUMEN

Acanthoscelides obtectus is one of the most notorious pests of stored kidney beans (Phaseolus vulgaris) worldwide. Kidney beans are an important source of food for these insects. α-Amylase is the main carbohydrate-digesting enzyme in animals including insects. In the current study, the biochemical analysis revealed higher α-amylase activity (U/ml) in 3rd and 4th larval instars but decreased gradually in subsequent developmental stages. However, the specific activity (U/mg) interestingly was highest in 1st instar and decreased in further developmental stages. During qualitative analysis of α-amylase using starch-agar and native PAGE, the maximum zone of starch lysis and a prominent band on the gel was observed in 3rd and 4th larval stages. The molecular mass of the native enzyme was also estimated and found to be 30.34 kDa. The crude α-amylase was further purified by ammonium sulfate precipitation, gel filtration on a Sephadex G-75, and ion exchange chromatography on the DEAE cellulose column. The purified amylase was found to be a monomer with a molecular mass of 15 kDa. The specific activity of the purified enzyme increased from 1.74 U/mg in the crude sample to 166.35 U/mg in the final purification step resulting in 95-fold purification with a yield of 11.14%. Further characterization of purified α-amylase revealed a pH optimum of 7.0 and a temperature optimum of 35 °C. Lineweaver-Burk plot analysis revealed Km and Vmax to be 0.09% and 3.3 U/mL, respectively. Oxalic acid, tannic acid, and HgCl2 significantly inhibited the enzyme, while the Na+, Ca++, and Mg++ ions acted as activators. In conclusion, the study revealed, the highest α-amylase activity in 3rd and 4th larval stages of Acanthoscelides obtectus followed by native and SDS PAGE resulting in molecular mass of 30.34 and 15 kDa respectively.

18.
Foods ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38890944

RESUMEN

A long-term intake of a high-fat and high-fructose diet (HFFD), even a high-fat, high-fructose but low-protein diet (HFFD + LP), could cause obesity associated with cognitive impairments. In the present study, rats were subjected to a normal diet (ND), an HFFD diet, an HFFD + LP diet, and an HFFD with kidney bean protein (KP) diet for 8 weeks to evaluate the effect of KP on HFFD- or HFFD + LP-induced obesity and cognitive impairment. The results demonstrated that compared with the HFFD diet, KP administration significantly decreased the body weight by 7.7% and the serum Angiotensin-Converting Enzyme 2 (ACE-2) and Insulin-like Growth Factor 1 (IGF-1) levels by 14.4% and 46.8%, respectively (p < 0.05). In addition, KP suppressed HFFD-induced cognitive impairment, which was evidenced by 8.7% less time required to pass the water maze test. The 16s RNA analysis of the colonic contents showed that the relative abundance of Bifidobacterium, Butyricimonas, and Alloprevotella was increased by KP by 5.9, 44.2, and 79.2 times. Additionally, KP supplementation primarily affected the choline metabolic pathway in the liver, and the synthesis and functional pathway of neurotransmitters in the brain, thereby improving obesity and cognitive function in rats.

19.
Food Chem ; 438: 137996, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37979260

RESUMEN

Herein, we used pH-shifted and pH-driven methods to assemble kidney-bean protein isolate (KPI) and luteolin (Lut) into a nanocomplex and subsequently investigated their binding mechanism, structure, and functional properties. Results showed that the nanocomplex prepared by the pH-driven method exhibited a better encapsulation effect and controlled release of Lut. Fluorescence spectroscopy and molecular docking analysis showed that the binding affinities under alkaline conditions were higher than those under acidic and neutral conditions. Various spectral techniques were used to determine the structural changes in the KPI-Lut nanocomplex, including the transformation of α-helices and ß-sheets and alteration of specific amino acid microenvironments, which were more pronounced in the pH-driven nanocomplex. The structural changes in the nanocomplex further affected their surface hydrophobicity and thermal stability. Additionally, the combination of KPI and Lut significantly improved the antioxidant activity and α-glucosidase inhibitory ability of the resultant nanocomplexes, particularly the one prepared by the pH-driven method.


Asunto(s)
Luteolina , Simulación del Acoplamiento Molecular , Concentración de Iones de Hidrógeno , Luteolina/química
20.
Food Chem ; 460(Pt 1): 140401, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39033640

RESUMEN

The study evaluates the interaction between Calocybe indica mushroom polyphenols (phenolic acid) and kidney bean protein (KBPM), aiming to enhance vegan food quality. The mushrooms exhibited a carbohydrate content of 3.65%, an antioxidant activity of 55.04 ± 0.17%, and a phenolic content of 4.86 mg GAE/g. Caffeic and cinnamic acids were identified through high-pressure liquid chromatography. Various concentrations of KBPM were tested at phenolic acid concentrations of 0.025, 0.050, 0.1, 0.2, 0.4, 0.8, and 1%, among these, KBPM 0.2 demonstrated the highest binding efficiency of 99.40 ± 0.05%. Notably, this complex improved the protein's functional properties, such as solubility by 11.43%, water and oil holding capacities by 10.62% and 22.04%, and emulsion capacity and stability by 3.69% and 5.83%, respectively, compared to the native protein. The protein-phenolic acid complex also enhanced thermal stability, surface charge, amino acid content, and reduced particle size compared to native protein. These enhancements also improved protein digestibility and sensory attributes in a fruit-based smoothie.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA