Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(16): e112812, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37403793

RESUMEN

Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.


Asunto(s)
Cinesinas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Acetilación , Microtúbulos/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Procesamiento Proteico-Postraduccional
2.
EMBO J ; 42(5): e112101, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636822

RESUMEN

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.


Asunto(s)
Tubulina (Proteína) , Animales , Ratones , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Péptido Sintasas , Proteínas Asociadas a Microtúbulos
3.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36751992

RESUMEN

Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.


Asunto(s)
Dineínas , Cinesinas , Animales , Cinesinas/metabolismo , Dineínas/metabolismo , Huso Acromático/metabolismo , Mitosis , ARN/metabolismo , Microtúbulos/metabolismo , Mamíferos/metabolismo
4.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36093836

RESUMEN

Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.


Asunto(s)
Cinesinas , Vaccinia , Extractos Celulares , Humanos , Microtúbulos/metabolismo , Vaccinia/metabolismo , Virus Vaccinia , Virión/fisiología
5.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34940839

RESUMEN

It is more than 25 years since the discovery that kinesin 1 is phosphorylated by several protein kinases. However, fundamental questions still remain as to how specific protein kinase(s) contribute to particular motor functions under physiological conditions. Because, within an whole organism, kinase cascades display considerable crosstalk and play multiple roles in cell homeostasis, deciphering which kinase(s) is/are involved in a particular process has been challenging. Previously, we found that GSK3ß plays a role in motor function. Here, we report that a particular site on kinesin 1 motor domain (KHC), S314, is phosphorylated by GSK3ß in vivo. The GSK3ß-phosphomimetic-KHCS314D stalled kinesin 1 motility without dissociating from microtubules, indicating that constitutive GSK3ß phosphorylation of the motor domain acts as a STOP. In contrast, uncoordinated mitochondrial motility was observed in CRISPR/Cas9-GSK3ß non-phosphorylatable-KHCS314A Drosophila larval axons, owing to decreased kinesin 1 attachment to microtubules and/or membranes, and reduced ATPase activity. Together, we propose that GSK3ß phosphorylation fine-tunes kinesin 1 movement in vivo via differential phosphorylation, unraveling the complex in vivo regulatory mechanisms that exist during axonal motility of cargos attached to multiple kinesin 1 and dynein motors.


Asunto(s)
Movimiento Celular/genética , Proteínas de Drosophila/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Cinesinas/genética , Microtúbulos/genética , Adenosina Trifosfatasas/genética , Animales , Transporte Axonal/genética , Axones/metabolismo , Sistemas CRISPR-Cas/genética , Movimiento Celular/fisiología , Drosophila melanogaster/genética , Dineínas/genética , Larva/genética , Neuronas/metabolismo , Fosforilación/genética , Dominios Proteicos/genética
6.
J Virol ; 97(1): e0192922, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602362

RESUMEN

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is an important and highly infectious pig disease worldwide. Kinesin-1, a molecular motor responsible for transporting cargo along the microtubule, has been demonstrated to be involved in the infections of diverse viruses. However, the role of kinesin-1 in the CSFV life cycle remains unknown. Here, we first found that Kif5B played a positive role in CSFV entry by knockdown or overexpression of Kif5B. Subsequently, we showed that Kif5B was associated with the endosomal and lysosomal trafficking of CSFV in the early stage of CSFV infection, which was reflected by the colocalization of Kif5B and Rab7, Rab11, or Lamp1. Interestingly, trichostatin A (TSA) treatment promoted CSFV proliferation, suggesting that microtubule acetylation facilitated CSFV endocytosis. The results of chemical inhibitors and RNA interference showed that Rac1 and Cdc42 induced microtubule acetylation after CSFV infection. Furthermore, confocal microscopy revealed that cooperation between Kif5B and dynein help CSFV particles move in both directions along microtubules. Collectively, our study shed light on the role of kinesin motor Kif5B in CSFV endocytic trafficking, indicating the dynein/kinesin-mediated bidirectional CSFV movement. The elucidation of this study provides the foundation for developing CSFV antiviral drugs. IMPORTANCE The minus end-directed cytoplasmic dynein and the plus end-directed kinesin-1 are the molecular motors that transport cargo on microtubules in intracellular trafficking, which plays a notable role in the life cycles of diverse viruses. Our previous studies have reported that the CSFV entry host cell is dependent on the microtubule-based motor dynein. However, little is known about the involvement of kinesin-1 in CSFV infection. Here, we revealed the critical role of kinesin-1 that regulated the viral endocytosis along acetylated microtubules induced by Cdc42 and Rac1 after CSFV entry. Mechanistically, once CSFV transported by dynein met an obstacle, it recruited kinesin-1 to move in reverse to the anchor position. This study extends the theoretical basis of intracellular transport of CSFV and provides a potential target for the control and treatment of CSFV infection.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Cinesinas , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Dineínas/metabolismo , Endocitosis , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/virología , Porcinos , Internalización del Virus , Replicación Viral/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas
7.
FASEB J ; 37(5): e22886, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043392

RESUMEN

Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.


Asunto(s)
Proteínas del Citoesqueleto , Neuropatía Axonal Gigante , Humanos , Proteínas del Citoesqueleto/metabolismo , Filamentos Intermedios/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Neuropatía Axonal Gigante/genética , Neuropatía Axonal Gigante/metabolismo , Neuropatía Axonal Gigante/patología , Microtúbulos/metabolismo
8.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063067

RESUMEN

Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a "kinesin-1 sink" to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes.


Asunto(s)
Cinesinas , Microtúbulos , Virus Vaccinia , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Humanos , Virus Vaccinia/metabolismo , Virus Vaccinia/fisiología , Virus Vaccinia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Transporte Biológico , Células HeLa
9.
J Allergy Clin Immunol ; 150(3): 676-689, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35469841

RESUMEN

BACKGROUND: Mast cells (MCs) are key effectors of the allergic response. Following the cross-linking of IgE receptors (FcεRIs), they release crucial inflammatory mediators through degranulation. Although degranulation depends critically on secretory granule (SG) trafficking toward the plasma membrane, the molecular machinery underlying this transport has not been fully characterized. OBJECTIVES: This study analyzed the function of Rab44, a large, atypical Rab guanosine triphosphatase highly expressed in MC, in the MC degranulation process. METHODS: Murine knockout (KO) mouse models (KORab44 and DKOKif5b/Rab44) were used to perform passive cutaneous anaphylaxis experiments and analyze granule translocation in bone marrow-derived MCs during degranulation. RESULTS: This study demonstrate that mice lacking Rab44 (KORab44) in their bone marrow-derived MCs are impaired in their ability to translocate and degranulate SGs at the plasma membrane on FcεRI stimulation. Accordingly, KORab44 mice were less sensitive to IgE-mediated passive cutaneous anaphylaxis in vivo. A lack of Rab44 did not impair early FcεRI-stimulated signaling pathways, microtubule reorganization, lipid mediator release, or cytokine secretion. Mechanistically, Rab44 appears to interact with and function as part of the previously described kinesin-1-dependent transport pathway. CONCLUSIONS: These results highlight a novel role of Rab44 as a regulator of SG transport during degranulation and anaphylaxis acting through the kinesin-1-dependent microtubule transport machinery. Rab44 can thus be considered a potential target for modulating MC degranulation and inhibiting IgE-mediated allergic reactions.


Asunto(s)
Anafilaxia , Mastocitos , Proteínas de Unión al GTP rab/metabolismo , Anafilaxia/metabolismo , Animales , Degranulación de la Célula , Inmunoglobulina E/metabolismo , Cinesinas , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Anafilaxis Cutánea Pasiva , Receptores de IgE/metabolismo , Vesículas Secretoras/metabolismo
10.
J Cell Sci ; 133(15)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32661088

RESUMEN

Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.


Asunto(s)
Actinas , Melanosomas , Microtúbulos , Miosinas , Epitelio Pigmentado de la Retina
11.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409568

RESUMEN

Salmonella enterica is an intracellular bacterial pathogen. The formation of its replication niche, which is composed of a vacuole associated with a network of membrane tubules, depends on the secretion of a set of bacterial effector proteins whose activities deeply modify the functions of the eukaryotic host cell. By recruiting and regulating the activity of the kinesin-1 molecular motor, Salmonella effectors PipB2 and SifA play an essential role in the formation of the bacterial compartments. In particular, they allow the formation of tubules from the vacuole and their extension along the microtubule cytoskeleton, and thus promote membrane exchanges and nutrient supply. We have developed in vitro and in cellulo assays to better understand the specific role played by these two effectors in the recruitment and regulation of kinesin-1. Our results reveal a specific interaction between the two effectors and indicate that, contrary to what studies on infected cells suggested, interaction with PipB2 is sufficient to relieve the autoinhibition of kinesin-1. Finally, they suggest the involvement of other Salmonella effectors in the control of the activity of this molecular motor.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Salmonella enterica , Proteínas Bacterianas , Células HeLa , Humanos , Cinesinas/genética , Salmonella , Vacuolas
12.
Development ; 146(8)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30936181

RESUMEN

Drosophila Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear. Ensconsin contains a microtubule (MT)-binding domain (MBD) and a Kinesin-binding domain (KBD). Rescue experiments show that only full-length Ensconsin restores the spindle length phenotype. KBD expression rescues ensc centrosome separation defects in NBs, but not the fast oocyte streaming and the localization of Staufen and Gurken. Interestingly, the KBD can stimulate Kinesin-1 targeting to MTs in vivo and in vitro We propose that a KBD and Kinesin-1 complex is a minimal activation module that increases Kinesin-1 affinity for MTs. Addition of the MBD present in full-length Ensconsin allows this process to occur directly on the MT and triggers higher Kinesin-1 targeting. This dual regulation by Ensconsin is essential for optimal Kinesin-1 targeting to MTs in oocytes, but not in NBs, illustrating the importance of adapting Kinesin-1 recruitment to different biological contexts.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Animales , Centrosoma/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(52): 26564-26570, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822619

RESUMEN

Bidirectional vesicle transport along microtubules is necessary for cell viability and function, particularly in neurons. When multiple motors are attached to a vesicle, the distance a vesicle travels before dissociating is determined by the race between detachment of the bound motors and attachment of the unbound motors. Motor detachment rate constants (koff) can be measured via single-molecule experiments, but motor reattachment rate constants (kon) are generally unknown, as they involve diffusion through the bilayer, geometrical considerations of the motor tether length, and the intrinsic microtubule binding rate of the motor. To understand the attachment dynamics of motors bound to fluid lipid bilayers, we quantified the microtubule accumulation rate of fluorescently labeled kinesin-1 motors in a 2-dimensional (2D) system where motors were linked to a supported lipid bilayer. From the first-order accumulation rate at varying motor densities, we extrapolated a koff that matched single-molecule measurements and measured a 2D kon for membrane-bound kinesin-1 motors binding to the microtubule. This kon is consistent with kinesin-1 being able to reach roughly 20 tubulin subunits when attaching to a microtubule. By incorporating cholesterol to reduce membrane diffusivity, we demonstrate that this kon is not limited by the motor diffusion rate, but instead is determined by the intrinsic motor binding rate. For intracellular vesicle trafficking, this 2D kon predicts that long-range transport of 100-nm-diameter vesicles requires 35 kinesin-1 motors, suggesting that teamwork between different motor classes and motor clustering may play significant roles in long-range vesicle transport.

14.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361749

RESUMEN

Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.


Asunto(s)
Células de Purkinje , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Ratones , Animales , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Supervivencia Celular/genética , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Emociones
15.
Development ; 145(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519888

RESUMEN

Nuclear migration of newly born neurons is essential for cortex formation in the brain. The nucleus is translocated by actin and microtubules, yet the actual force generated by the interplay of these cytoskeletons remains elusive. High-resolution time-lapse observation of migrating murine cerebellar granule cells revealed that the nucleus actively rotates along the direction of its translocation, independently of centrosome motion. Pharmacological and molecular perturbation indicated that spin torque is primarily generated by microtubule motors through the LINC complex in the absence of actomyosin contractility. In contrast to the prevailing view that microtubules are uniformly oriented around the nucleus, we observed that the perinuclear microtubule arrays are of mixed polarity and both cytoplasmic dynein complex and kinesin-1 are required for nuclear rotation. Kinesin-1 can exert a point force on the nuclear envelope via association with nesprins, and loss of kinesin-1 causes failure in neuronal migration in vivo Thus, microtubules steer the nucleus and drive its rotation and translocation via a dynamic, focal interaction of nesprins with kinesin-1 and dynein, and this is necessary for neuronal migration during brain development.


Asunto(s)
Movimiento Celular , Núcleo Celular/fisiología , Proteínas de Microfilamentos/fisiología , Microtúbulos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Núcleo Celular/metabolismo , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Microtúbulos/metabolismo , Movimiento (Física) , Células 3T3 NIH
16.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969440

RESUMEN

The features of herpes simplex virus 1 (HSV-1) strain 129 (H129), including natural neurotropism and anterograde transneuronal trafficking, make it a potential tool for anterograde neural circuitry tracing. Recently anterograde polysynaptic and monosynaptic tracers were developed from H129 and have been applied for the identification of novel connections and functions of different neural circuitries. However, how H129 viral particles are transported in neurons, especially those of the central nervous system, remains unclear. In this study, we constructed recombinant H129 variants with mCherry-labeled capsids and/or green fluorescent protein (GFP)-labeled envelopes and infected the cortical neurons to study axonal transport of H129 viral particles. We found that different types of viral particles were unevenly distributed in the nucleus, cytoplasm of the cell body, and axon. Most H129 progeny particles were unenveloped capsids and were transported as capsids rather than virions in the axon. Notably, capsids acquired envelopes at axonal varicosities and terminals where the sites forming synapses are connected with other neurons. Moreover, viral capsids moved more frequently in the anterograde direction in axons, with an average velocity of 0.62 ± 0.18 µm/s and maximal velocity of 1.80 ± 0.15 µm/s. We also provided evidence that axonal transport of capsids requires the kinesin-1 molecular motor. These findings support that H129-derived tracers map the neural circuit anterogradely and possibly transsynaptically. These data will guide future modifications and improvements of H129-based anterograde viral tracers.IMPORTANCE Anterograde transneuronal tracers derived from herpes simplex virus 1 (HSV-1) strain 129 (H129) are important tools for mapping neural circuit anatomic and functional connections. It is, therefore, critical to elucidate the transport pattern of H129 within neurons and between neurons. We constructed recombinant H129 variants with genetically encoded fluorescence-labeled capsid protein and/or glycoprotein to visualize viral particle movement in neurons. Both electron microscopy and light microscopy data show that H129 capsids and envelopes move separately, and notably, capsids are enveloped at axonal varicosity and terminals, which are the sites forming synapses to connect with other neurons. Superresolution microscopy-based colocalization analysis and inhibition of H129 particle movement by inhibitors of molecular motors support that kinesin-1 contributes to the anterograde transport of capsids. These results shed light into the mechanisms for anterograde transport of H129-derived tracer in axons and transmission between neurons via synapses, explaining the anterograde labeling of neural circuits by H129-derived tracers.


Asunto(s)
Cápside/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Neuronas/virología , Animales , Transporte Axonal , Axones/patología , Axones/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes , Herpes Simple/patología , Herpesvirus Humano 1/genética , Cinesinas/metabolismo , Ratones , Ratones Endogámicos C57BL/embriología , Neuronas/patología , Células Vero , Virión/metabolismo
17.
Phys Biol ; 18(4)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33827070

RESUMEN

The number of motors carrying cargos in biological cells is not well-defined, instead varying from cargo to cargo about a statistical mean. Predictive understanding of motility in cells therefore requires quantitative insights into mixed ensembles of cargos. Toward this goal, here we employed Monte Carlo simulations to investigate statistical ensembles of cargos carried by a Poisson-distributed number of motors. Focusing on the key microtubule-based motor kinesin-1, our simulations utilized experimentally determined single-kinesin characteristics and alterations in kinesin's on- and off-rates caused by cellular factors and/or physical load. We found that a fractional increase in mean kinesin number enhances the ensemble-averaged cargo run length and amplifies run-length sensitivity to changes in single-kinesin on-rate and off-rate. These tuning effects can be further enhanced as solution viscosity increases over the range reported for cells. Together, our data indicate that the physiological range of kinesin number sensitively tunes the motility of mixed cargo populations. These effects have rich implications for quantitative and predictive understanding of cellular motility and its regulation.


Asunto(s)
Cinesinas/química , Proteínas Motoras Moleculares/química , Microtúbulos/química , Método de Montecarlo , Distribución de Poisson
18.
Ecotoxicol Environ Saf ; 228: 112993, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34808507

RESUMEN

Acute exposure to cadmium (Cd) causes vacuolar degeneration in buffalo rat liver 3 A (BRL 3 A) cells. The present study aimed to determine the relationship between Cd-induced microtubule damage and intracellular vacuolar degeneration. Western blotting results showed that Cd damaged the microtubule network and downregulated the expression of microtubule-associated proteins-kinesin-1 heavy chain (KIF5B), γ-tubulin, and acetylated α-tubulin in BRL 3 A cells. Immunofluorescence staining revealed that Cd inhibited interactions between α-tubulin and microtubule-associated protein 4 (MAP4) as well as KIF5B. Increasing Cd concentrations decreased the levels of the lipid kinase, PIKfyve, which regulates the activity of endosome-lysosome fission. Immunofluorescence and transmission electron microscopy revealed vacuole-like organelles that were late endosomes and lysosomes. The PIKfyve inhibitor, YM201636, and the microtubule depolymerizer, nocodazole, aggravated Cd-induced endosome-lysosome enlargement. Knocking down the kif5b gene that encodes KIF5B intensified the enlargement of endosome-lysosomes and expression of early endosome antigen 1 (EEA1), Ras-related protein Rab-7a (RAB7), and lysosome-associated membrane glycoprotein 2 (LAMP2). Nocodazole, YM201636, and the knockdown of kif5b blocked autophagic flux. We concluded that Cd-induced damage to the microtubule network is the main reason for endosome-lysosome enlargement and autophagic flux blockage in BRL 3 A cells, and kinesin-1 plays a critical role in this process.

19.
Traffic ; 19(2): 111-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29077261

RESUMEN

Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single-molecule assays indicate that kinesin-1 is more strongly inhibited than kinesin-2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin-1, kinesin-2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus-end in a dose-dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin-1, kinesin-2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor-specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus- and minus-end directed transport.


Asunto(s)
Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas tau/metabolismo , Animales , Movimiento Celular/fisiología , Ratones , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
20.
J Neurosci ; 39(28): 5562-5580, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31061088

RESUMEN

We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxß in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxß displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.


Asunto(s)
Transporte Axonal , Encefalomielitis Autoinmune Experimental/metabolismo , Vaina de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Axones/metabolismo , Células Cultivadas , Encefalomielitis Autoinmune Experimental/genética , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Receptor Nogo 1/genética , Células Ganglionares de la Retina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA