Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(29)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608317

RESUMEN

Achieving energy-efficient and high-performance field-effect transistors (FETs) is one of the most important goals for future electronic devices. This paper reports semiconducting single-walled carbon nanotube FETs (s-SWNT-FETs) with an optimized high-krelaxor ferroelectric insulator P(VDF-TrFE-CFE) thickness for low-voltage operation. The s-SWNT-FETs with an optimized thickness (∼800 nm) of the high-kinsulator exhibited the highest average mobility of 14.4 cm2V-1s-1at the drain voltage (ID) of 1 V, with a high current on/off ratio (Ion/off>105). The optimized device performance resulted from the suppressed gate leakage current (IG) and a sufficiently large capacitance (>50 nF cm-2) of the insulating layer. Despite the extremely high capacitance (>100 nF cm-2) of the insulating layer, an insufficient thickness (<450 nm) induces a highIG, leading to reducedIDand mobility of s-SWNT-FETs. Conversely, an overly thick insulator (>1200 nm) cannot introduce sufficient capacitance, resulting in limited device performance. The large capacitance and sufficient breakdown voltage of the insulating layer with an appropriate thickness significantly improved p-type performance. However, a reduced n-type performance was observed owing to the increased electron trap density caused by fluorine proportional to the insulator thickness. Hence, precise control of the insulator thickness is crucial for achieving low-voltage operation with enhanced s-SWNT-FET performance.

2.
Small ; 18(39): e2203165, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026583

RESUMEN

Organic/inorganic hybrid materials are utilized extensively as gate dielectric layers in organic thin-film transistors (OTFTs). However, inherently low dielectric constant of organic materials and lack of a reliable deposition process for organic layers hamper the broad application of hybrid dielectric materials. Here, a universal strategy to synthesize high-k hybrid dielectric materials by incorporating a high-k polymer layer on top of various inorganic layers generated by different fabrication methods, including AlOx and HfOx , is presented. Those hybrid dielectrics commonly exhibit high capacitance (>300 nF·cm-2 ) as well as excellent insulating properties. A vapor-phase deposition method is employed for precise control of the polymer film thickness. The ultralow-voltage (<3 V) OTFTs are demonstrated based on the hybrid dielectric layer with 100% yield and uniform electrical characteristics. Moreover, the exceptionally high stability of OTFTs for long-term operation (current change less than 5% even under 30 h of voltage stress at 2.0 MV·cm-1 ) is achieved. The hybrid dielectric is fully compatible with various substrates, which allows for the demonstration of intrinsically flexible OTFTs on the plastic substrate. It is believed that this approach for fabricating hybrid dielectrics by introducing the high-k organic material can be a promising strategy for future low-power, flexible electronics.

3.
ACS Appl Mater Interfaces ; 14(45): 51137-51148, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36319949

RESUMEN

The comparatively high coercive field in Hf0.5Zr0.5O2 (HZO) and other HfO2-based ferroelectric thin films leads to two critical challenges for their application in embedded ferroelectric memory: high operating voltage due to a large thickness-field product and poor endurance due to the high operating field close to the breakdown field. In this study, we demonstrate that the thickness scaling of ferroelectric HZO down to 4 nm is a promising approach to overcome these challenges. As the coercive voltage scales down almost linearly with the film thickness, the operating voltage of 4 nm HZO is reduced to 0.6 V for one-shot operation and 1.2 V for stable memory operation, which is in the voltage range compatible with scaled silicon technologies. Furthermore, it is found that the breakdown field is substantially improved in thinner HZO since the breakdown mechanism is dominated by the stress voltage, not the stress field, resulting in improved cycle-to-breakdown by more than 4 orders of magnitude when thinning from 9.5 to 4 nm. We identify two concerns accompanying thickness scaling: the increase in crystallization temperature and the pinched hysteresis behavior, which can be addressed by carefully preparing temperature-thickness mapping and applying strong-field wake-up cycling, respectively. Our optimal 4 nm-thick HZO ferroelectric capacitor exhibits an operating voltage of 1.2 V with over 10 year data retention and 1012 endurance cycles at 100 kHz, which can be further improved to more than 1014 with a smaller capacitor size and higher operating frequency.

4.
ACS Appl Mater Interfaces ; 13(26): 31153-31162, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34176261

RESUMEN

Low-voltage operation, high durability, and long memory time are demanded for electrochromic (EC) display device applications. Metallo-supramolecular polymers (MSPs), composed of a metal ion and ditopic ligand, are one of the recently developed EC materials, and the ligand modification is expected to tune the redox potential of MSP. In order to lower the redox potential of MSP, tetrakis(N-methylbenzimidazolyl)bipyridine (LBip) was designed as an electronically rich ligand. Ru-based MSP (polyRu-LBip) was successfully synthesized by 1:1 complexation of RuCl2(DMSO)4 with LBip. The molecular weight (Mw) was high (8.8 × 106 Da) enough to provide a simple 1H NMR spectrum, of which the proton peaks could be assigned by the comparison with the spectrum of the corresponding mono-Ru complex. The redox potential (E1/2) between Ru(II/III) was 0.51 V versus Ag/Ag+, which was much lower than the redox potential of previously reported Ru-based MSP with bis(terpyridyl)benzene (0.95 V vs Ag/Ag+). The polymer film exhibited reversible, distinct color changes between violet and light green-yellow upon applying very low potentials of 0 and 0.6 V vs Ag/Ag+, respectively. The appearance and disappearance of the metal-to-ligand charge transfer absorption by the electrochemical redox between Ru(II/III) were confirmed using in situ spectro-electrochemical measurement. A solid-state EC device with polyRu-LBip was revealed to have large optical contrast (ΔT 54%), fast response time (1.37 s for bleaching and 0.67 s for coloration), remarkable coloration efficiency (571 cm2/C), and high durability for the repeated color changes more than 20,000 cycles. The device also showed a long optical memory time of up to 19 h to maintain 40% to the initial contrast under the open circuit conditions. It is considered that the stabilization of the Ru(III) state by LBip suppressed the self-coloring to Ru(II) inside the device.

5.
ACS Appl Mater Interfaces ; 13(42): 50381-50391, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34657431

RESUMEN

To fulfill the insatiable demand for wearable technologies, ionic electroactive polymer actuators have been entrenched as promising candidates that can convert low-input-voltage energy into high mechanical throughput. However, a ubiquitous trilayer design of actuators allows exclusively bending deformation and their highly nonlinear response restricts the true potential of low-voltage actuators for next-generation technology. Herein, we report an unprecedented multilayer design for soft actuators that enables complex deformations shown by skeletal muscles, mechanoreceptors, and plant roots in response to various environmental stimuli. Hierarchically ordered pores in a stretchable interlayer provide excellent electromechanical properties and fast charging kinetics, which enable linear motion by soft actuators at 3 V and under ambient conditions. Our actuators demonstrate astonishing levels of performance, including a 6.5% linear actuation strain, 0.8 s rapid switching speed, and 5000 cycle stable performance in air, producing a 4.2 mN linear blocking force at a ±3 V alternating square-wave voltage. This actuator design demonstrating a walkable spider capable of controlled back-and-forth propelling motion at low driving voltages provides the platform to envision a complex functionality using a portable battery as a power source for soft robotics, wearable exosuits, and biomimetic technologies.


Asunto(s)
Materiales Biomiméticos/química , Polímeros/química , Robótica , Materiales Biomiméticos/síntesis química , Humanos , Cinética , Ensayo de Materiales , Polímeros/síntesis química
6.
ACS Appl Mater Interfaces ; 11(4): 4226-4232, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30607940

RESUMEN

The advanced Hall magnetic sensor using an ion-gated graphene field-effect transistor demonstrates a high current-normalized sensitivity larger than 3000 V/AT and low operation voltages smaller than 0.5 V. From commercially available graphene-on-SiO2 wafers, large-area arrays of ion-gated graphene Hall element (ig-GHE) samples are prepared through complementary metal-oxide-semiconductor-compatible fabrication processes except the final addition of ionic liquid electrolyte covering the exposed graphene channel and the separate gate-electrode area. The enhanced carrier tunability by ionic gating enables this ig-GHE device to be extremely sensitive to magnetic fields in low-voltage-operation regimes. Further electrical characterization indicates that the operation window is limited by the nonuniform carrier concentration over the channel under high bias conditions. The drain-current-normalized magnetic resolution of the device measured using the low-frequency noise technique is comparable to the previously reported values despite its significant low power consumption.

7.
Adv Mater ; 31(23): e1900564, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30977567

RESUMEN

Herein, a unique device architecture is proposed for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. A key feature of this work is that the semiconductor channel of the fiber transistor comprises a twist assembly of the source and drain electrode microfibers that are coated by an organic semiconductor. This architecture not only allows the channel dimension of the device to be readily controlled by varying the thickness of the semiconductor layer and the twisted length of the two electrode microfibers, but also passivates the device without affecting interconnections with other electrical components. It is found that the control of crystalline nanostructure of the semiconductor layer is critical for improving both the production yield of the device and the charge-carrier transport in the device. The resulting fibrous organic transistors show a high output current of over -5 mA at a low operation voltage of -1.3 V and a good on/off current ratio of 105 . The device performance is maintained after repeated bending deformation and washing with a strong detergent solution. Application of the fibrous organic transistors to switch current-driven LED devices and detection of electrocardiography signals from a human body are demonstrated.

8.
Nanomaterials (Basel) ; 9(9)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500167

RESUMEN

Solution-processed metal oxides have been investigated as an alternative to vacuum-based oxides to implement low-cost, high-performance electronic devices on flexible transparent substrates. However, their electrical properties need to be enhanced to apply at industrial scale. Amorphous indium-gallium-zinc oxide (a-IGZO) is the most-used transparent semiconductor metal oxide as an active channel layer in thin-film transistors (TFTs), due to its superior electrical properties. The present work evaluates the influence of composition, thickness and ageing on the electrical properties of solution a-IGZO TFTs, using solution combustion synthesis method, with urea as fuel. After optimizing the semiconductor properties, low-voltage TFTs were obtained by implementing a back-surface passivated 3-layer In:Ga:Zn 3:1:1 with a solution-processed high-к dielectric; AlOx. The devices show saturation mobility of 3.2 cm2 V-1 s-1, IOn/IOff of 106, SS of 73 mV dec-1 and VOn of 0.18 V, thus demonstrating promising features for low-cost circuit applications.

9.
ACS Appl Mater Interfaces ; 10(47): 40672-40680, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30277059

RESUMEN

Organic/inorganic hybrid complementary inverters operating at low voltages (1 V or less) were fabricated by transfer-stamping organic p-type poly(3-hexylthiophene) (P3HT) and inorganic n-type zinc oxide (ZnO) electrolyte-gated transistors (EGTs). A semicrystalline homopolymer-based gel electrolyte, or an ionogel, was also transfer-stamped on the semiconductors for use as a high-capacitance gate insulator. For the ionogel stamping, the thermoreversible crystallization of phase-separated homopolymer crystals, which act as network cross-links, was employed to improve the contact between the gel and the semiconductor channel. The homopolymer ionogel-gated P3HT transistor exhibited a high hole mobility of 2.81 cm2/(V s), and the ionogel-gated n-type ZnO transistors also showed a high electron mobility of 2.06 cm2/(V s). The transfer-stamped hybrid complementary inverter based on the P3HT and ZnO EGTs showed a low-voltage operation with appropriate inversion characteristics including a high voltage gain of ∼18. These results demonstrate that the transfer-stamping strategy provides a facile and reliable processing route for fabricating electrolyte-gated transistors and logic circuits.

10.
ACS Appl Mater Interfaces ; 10(11): 9563-9570, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29468869

RESUMEN

We present nonvolatile transistor memory devices that rely on the formation of electric double layer (EDL) at the semiconductor-electrolyte interface. The two critical functional components of the devices are the ion gel electrolyte and gold nanoparticles (NPs). The ion gel electrolyte contains ionic species for EDL formation that allow inducing charges in the semiconductor-electrolyte interface. The gold NPs inserted between the ion gel and the channel layer serve as trapping sites to the induced charges to store the electrical input signals. Two different types of gold NPs were used: one prepared using direct thermal evaporation and the other prepared using a colloidal process. The organic ligands attached onto the colloidal gold NPs prevented the escape of the trapped charges from the particles and thus enhanced the retention characteristics of the programmed/erased signals. The low-voltage-driven EDL formation resulted in a programmed/erased memory signal ratio larger than 103 from the nonvolatile indium-gallium-zinc oxide transistor memory devices at voltages below 10 V, which could be held for >105 s. The utility of the electrolytes to operate memory devices demonstrated herein should provide an alternative strategy to realize cheap, portable electronic devices powered with thin-film batteries.

11.
ACS Appl Mater Interfaces ; 10(38): 32462-32470, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30175586

RESUMEN

We developed a solution-processable, thin, and high-dielectric polyurea-based organic gate insulator for low-voltage operation and high performance of organic thin-film transistors (OTFTs). A 60 nm-thick polyurea thin film exhibited a high dielectric constant of 5.82 and excellent electrical insulating properties owing to strong hydrogen bonding. The hydrogen bonding of the synthesized polyurea was confirmed using infrared spectroscopy and was quantitatively evaluated by measuring the interactive force using atomic force microscopy. Moreover, the effect of hydrogen bonding of polyurea on the insulating properties was systematically investigated through the combination of various monomers and control of the thickness of the polyurea film. The dinaphtho[2,3- b:2',3'- f]thieno[3,2- b]thiophene-based OTFTs with the polyurea gate insulator showed excellent thin-film transistor (TFT) performance with a field-effect mobility of 1.390 cm2/V·s and an on/off ratio of ∼105 at a low operation voltage below 2 V. In addition, it is possible to fabricate flexible polymer organic semiconductor (OSC)-based TFT devices using a solution process, owing to excellent solvent stability in various organic solvents. We believe that the solution-processable polyurea gate insulator with a high dielectric constant and good insulation properties is a promising candidate for low-voltage-operated OTFTs using various OSCs.

12.
Adv Mater ; 29(34)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28691310

RESUMEN

Low-temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large-area uniformity. Herein, by using solution combustion synthesis (SCS), p-type Cu-doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p-type conductivity. Their integration into thin-film transistors (TFTs) demonstrates typical p-type semiconducting behavior. The optimized Cu5% NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm2 V-1 s-1 , a large on/off current ratio of ≈104 , and clear switching characteristics under dynamic measurements. The employment of a high-k ZrO2 gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery-driven devices. The construction of a light-emitting-diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low-temperature-processed Cu:NiO thin films via SCS not only provides a feasible approach for low-cost flexible p-type oxide electronics but also represents a significant step toward the development of complementary metal-oxide semiconductor circuits.

13.
ACS Appl Mater Interfaces ; 8(8): 5499-508, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26840992

RESUMEN

Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

14.
Adv Mater ; 28(13): 2547-54, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26833783

RESUMEN

Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications.

15.
Adv Mater ; 27(12): 2113-20, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25678213

RESUMEN

Low-voltage, low-cost, high-performance monolayer field-effect transistors are demonstrated, which comprise a densely packed, long-range ordered monolayer spin-coated from core-cladding liquid-crystalline pentathiophenes and a solution-processed high-k HfO2 -based nanoscale gate dielectric. These monolayer field-effect transistors are light-sensitive and are able to function as reporters to convert analyte binding events into electrical signals with ultrahigh sensitivity (≈10 ppb).

16.
IEEE J Emerg Sel Top Power Electron ; 3(1): 215-225, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26640745

RESUMEN

This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

17.
Materials (Basel) ; 8(10): 6926-6934, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28793608

RESUMEN

A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT) was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost comparable to the results yielded by the conventionally used vacuum deposition and high temperature annealing method. Octadecylphosphonic acid (ODPA) self-assembled monolayer (SAM) treatment of the AlOx was employed in order to realize high-performance (>0.4 cm²/Vs saturation mobility) and low-operation-voltage (<5 V) diketopyrrolopyrrole (DPP)-based OTFTs on an ultra-thin polyimide film (3-µm thick). Thus, low-temperature photochemically-annealed solution-processed AlOx film with SAM layer is an attractive candidate as a dielectric-layer for use in high-performance organic TFTs operated at low voltages.

18.
Adv Mater ; 26(2): 288-92, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24403114

RESUMEN

Hydrophobic organo-compatible but low-capacitance dielectrics (10.5 nFcm(-2) ), polystyrene-grafted SiO2 could induce surface-mediated large crystal grains of face-to-face stacked triethylsilylethynyl anthradithiophene (TES-ADT), producing more efficient charge-carrier transport, in comparison to µm-sized pentacene crystals containing a face-to-edge packing. Low-voltage operating TES-ADT OFETs showed good device performance (µFET ≈ 1.3 cm(2) V(-1) s(-1) , Vth ≈ 0.5 V, SS ≈ 0.2 V), as well as excellent device reliability.

19.
ACS Appl Mater Interfaces ; 6(22): 20179-87, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25341965

RESUMEN

As one of the most emerging next-generation nonvolatile memories, one-transistor (1T)-type nonvolatile memories are of great attention due to their excellent memory performance and simple device architecture suitable for high density memory arrays. In particular, organic 1T-type memories containing both organic semiconductors and insulators are further beneficial because of their mechanical flexibility with low cost fabrication. Here, we demonstrate a new flexible organic 1T-type memory operating at low voltage. The low voltage operation of a memory less than 10 V was obtained by employing a polymer gate insulator solution blended with ionic liquid as a charge storage layer. Ionic liquid homogeneously dissolved in a thin poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) film gave rise to low voltage operation of a device due to its high capacitance. Simultaneously, stable charge trapping of either anions or cations efficiently occurred in the polymer matrix, dependent upon gate bias. Optimization of ionic liquid in PVDF-TrFE thus led to an air-stable and mechanically flexible organic 1T-type nonvolatile memory operating at programming voltage of ±7 V with large ON/OFF current margin of approximately 10(3), reliable time-dependent data retention of more than 10(4) seconds, and write/read endurance cycles of 80.

20.
Adv Mater ; 25(32): 4511-4, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23788245

RESUMEN

Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA