Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 33(17-18): 1252-1264, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395740

RESUMEN

Although MAX is regarded as an obligate dimerization partner for MYC, its function in normal development and neoplasia is poorly defined. We show that B-cell-specific deletion of Max has a modest effect on B-cell development but completely abrogates Eµ-Myc-driven lymphomagenesis. While Max loss affects only a few hundred genes in normal B cells, it leads to the global down-regulation of Myc-activated genes in premalignant Eµ-Myc cells. We show that the balance between MYC-MAX and MNT-MAX interactions in B cells shifts in premalignant B cells toward a MYC-driven transcriptional program. Moreover, we found that MAX loss leads to a significant reduction in MYC protein levels and down-regulation of direct transcriptional targets, including regulators of MYC stability. This phenomenon is also observed in multiple cell lines treated with MYC-MAX dimerization inhibitors. Our work uncovers a layer of Myc autoregulation critical for lymphomagenesis yet partly dispensable for normal development.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Linfoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transporte Activo de Núcleo Celular , Animales , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/farmacología , Quinurenina/genética , Quinurenina/metabolismo , Linfoma/fisiopatología , Ratones , Organoides/crecimiento & desarrollo , Organoides/fisiopatología , Oximas/farmacología , Sulfonamidas/farmacología
2.
Cancer Sci ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321027

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1F/F mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.

3.
Biogerontology ; 25(2): 279-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37917220

RESUMEN

Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells' telomeres and telomerase in health and age related-diseases.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Telomerasa/genética , Envejecimiento/fisiología , Linfocitos T/metabolismo , Telómero
4.
Pathol Int ; 74(3): 103-118, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38411330

RESUMEN

Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.


Asunto(s)
Núcleo Celular , Neoplasias , Animales , Humanos , ARN Mensajero/genética , Daño del ADN , Carcinogénesis/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521752

RESUMEN

CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Linfoma/genética , Linfoma/patología , Fosforilación/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Ratones , Mutación/genética , Translocación Genética/genética
6.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397043

RESUMEN

Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.


Asunto(s)
Inflamasomas , Linfoma , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/metabolismo , Linfoma/etiología , Linfoma/terapia , Microambiente Tumoral
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542233

RESUMEN

Primary Sjögren's disease is primarily driven by B-cell activation and is associated with a high risk of developing non-Hodgkin's lymphoma (NHL). Over the last few decades, microRNA-155 (miR-155) has arisen as a key regulator of B-cells. Nevertheless, its role in primary Sjögren's disease remains elusive. Thus, the purpose of this study was (i) to explore miR-155, B-cell activating factor (BAFF)-receptor (BAFF-R), and Interleukin 6 receptor (IL-6R) expression in the labial salivary glands (LSG) of patients with primary Sjögren's disease, aiming to identify potential B-cell activation biomarkers related to NHL development. Twenty-four patients with primary Sjögren's disease, and with available tissue blocks from a LSG biopsy performed at diagnosis, were enrolled. Among them, five patients developed B-cell NHL during follow-up (7.3 ± 3.1 years). A comparison group of 20 individuals with sicca disease was included. Clinical and laboratory parameters were recorded and the LSG biopsies were evaluated to assess local inflammation in terms of miR-155/BAFF-R and IL-6R expression. Stratifying the primary Sjögren's disease cohort according to lymphomagenesis, miR-155 was upregulated in primary Sjögren's disease patients who experienced NHL, more so than those who did not experience NHL. Moreover, miR-155 expression correlated with the focus score (FS), as well as BAFF-R and IL-6R expression, which were increased in primary Sjögren's disease patients and in turn related to neoplastic evolution. In conclusion, epigenetic modulation may play a crucial role in the aberrant activation of B-cells in primary Sjögren's disease, profoundly impacting the risk of NHL development.


Asunto(s)
Linfoma no Hodgkin , MicroARNs , Síndrome de Sjögren , Humanos , Glándulas Salivales/metabolismo , Síndrome de Sjögren/diagnóstico , Glándulas Salivales Menores/patología , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/complicaciones , Biomarcadores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
8.
Int J Cancer ; 152(9): 1947-1963, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36533670

RESUMEN

Waldenström macroglobulinemia (WM) is a rare subtype of non-Hodgkin lymphoma characterized by malignant lymphoplasmacytic cells in the bone marrow (BM). To dissect the pathophysiology of WM, we evaluated clonal cells by mapping of B cell lymphomagenesis with adaptive and innate immune tumor microenvironment (TME) in the BM of WM patients using mass cytometry (CyTOF). In-depth immunophenotypic profiling of WM cells exhibited profound expansion of clonal cells in both unswitched and switched memory B cells and also plasma cells with aberrant expression variations. WM B lymphomagenesis was associated with reduction of most B cell precursors assessed with the same clonally restricted light chain and phenotypic changes. The immune TME was infiltrated by mature monocytes, neutrophils and adaptive T cells, preferentially subsets of effector T helper, effector CTL and effector memory CTL cells that were associated with superior overall survival (OS), in contrast to progenitors of T cells and myeloid/monocytic lineage subsets that were suppressed in WM cohort. Moreover, decrease in immature B and NKT cells was related to worse OS in WM patients. Innate and adaptive immune subsets of WM TME were modulated by immune checkpoints, including PD-1/PD-L1&PD-L2, TIGIT/PVR, CD137/CD137-L, CTLA-4, BTLA and KIR expression. The response of ibrutinib treatment to the reduction of clonal memory B cell was associated with high levels of immature B cells and effector memory CTL cells. Our study demonstrates that CyTOF technology is a powerful approach for characterizing the pathophysiology of WM at various stages, predicting patient risk and monitoring the effectiveness of treatment strategies.


Asunto(s)
Linfoma de Células B , Macroglobulinemia de Waldenström , Humanos , Macroglobulinemia de Waldenström/tratamiento farmacológico , Macroglobulinemia de Waldenström/metabolismo , Microambiente Tumoral , Células Plasmáticas/patología , Linfocitos B/patología
9.
Cancer Sci ; 114(4): 1556-1568, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541483

RESUMEN

Adult T-cell leukemia/lymphoma (ATL) develops via stepwise accumulation of gene mutations and chromosome aberrations. However, the molecular mechanisms underlying this tumorigenic process are poorly understood. We previously reported the presence of a biological link between the expression of CD30, which serves as a marker for ATL progression, and the actively proliferating fraction of human T-cell leukemia virus type 1 (HTLV-1)-infected cells that display polylobulation. Here, we demonstrated that CD30 signaling induced chromosomal instability with clonal expansion through DNA double-strand breaks (DSBs) via an increase of intracellular reactive oxygen species. CD30+ ATL cells were composed of subclones with additional genomic aberrations compared with CD30- ATL cells in ATL patients. Furthermore, we found an accumulation of copy number loss of DSB repair-related genes as the disease progressed. Taken together, CD30 expression on ATL cells appears to be correlated with genomic instability, suggesting that CD30 signaling is one of the oncogenic factors of ATL progression with clonal evolution. This study provides new insight into the biological roles of CD30 signaling and could improve our understanding of tumorigenic processes of HTLV-1-infected cells.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Linfoma , Adulto , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Transducción de Señal/genética , Inestabilidad Cromosómica/genética
10.
J Med Virol ; 95(3): e28633, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866703

RESUMEN

Burkitt lymphoma (BL) is a B cell malignancy associated with the Epstein-Barr virus (EBV). Most BL cases are characterized by a t(8;14) chromosomal translocation involving the MYC oncogene and the immunoglobulin heavy chain gene (IGH). The role of EBV in promoting this translocation remains largely unknown. Here we provide the experimental evidence that EBV reactivation from latency leads to an increase in the proximity between the MYC and IGH loci, otherwise located far away in the nuclear space both in B-lymphoblastoid cell lines and in patients' B-cells. Specific DNA damage within the MYC locus, followed by the MRE11-dependent DNA repair plays a role in this process. Using a CRISPR/Cas9-based B cell model to induce specific DNA double strand breaks in MYC and IGH loci, we have shown that the MYC-IGH proximity induced by EBV reactivation leads to an increased t(8;14) translocation frequency.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Genes de las Cadenas Pesadas de las Inmunoglobulinas
11.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34605140

RESUMEN

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Animales , Proteínas de Ciclo Celular , Infecciones por Virus de Epstein-Barr/complicaciones , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Latencia del Virus , Quinasa Tipo Polo 1
12.
Proc Natl Acad Sci U S A ; 117(25): 14421-14432, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32522871

RESUMEN

Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.


Asunto(s)
Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/patogenicidad , Linfoma de Células B/patología , Células Plasmáticas/patología , Animales , Diferenciación Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Fibroblastos , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma de Células B/virología , Ratones , Ratones Noqueados , Células Plasmáticas/virología , Cultivo Primario de Células , Transactivadores/genética , Transactivadores/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo
13.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768631

RESUMEN

The gut microbiome is increasingly being recognized as an important immunologic environment, with direct links to the host immune system. The scale of the gut microbiome's genomic repertoire extends the capacity of its host's genome by providing additional metabolic output, and the close communication between gut microbiota and mucosal immune cells provides a continued opportunity for immune education. The relationship between the gut microbiome and the host immune system has important implications for oncologic disease, including lymphoma, a malignancy derived from within the immune system itself. In this review, we explore past and recent discoveries describing the role that bacterial populations play in lymphomagenesis, diagnosis, and therapy. We highlight key relationships within the gut microbiome-immune-oncology axis that present exciting opportunities for directed interventions intended to shape the microbiome for therapeutic effect. We conclude with a limited summary of active clinical trials targeting the microbiome in hematologic malignancies, along with future directions on gut microbiome investigations within lymphoid malignancies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Bacterias/metabolismo
14.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240076

RESUMEN

CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.


Asunto(s)
Infecciones por HTLV-I , Enfermedad de Hodgkin , Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Linfoma de Células B Grandes Difuso , Linfoma Anaplásico de Células Grandes , Adulto , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Enfermedad de Hodgkin/patología , Linfoma de Células B Grandes Difuso/patología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Progresión de la Enfermedad
15.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047075

RESUMEN

Epidemiological evidence supports an association between cow's milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant's BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow's milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal "proliferation-dominated" B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.


Asunto(s)
Linfoma de Células B Grandes Difuso , MicroARNs , Animales , Femenino , Bovinos , Recién Nacido , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Leche/metabolismo , Fosfatidilinositol 3-Quinasas , Linfoma de Células B Grandes Difuso/patología , Linfocitos B/metabolismo
16.
Immunol Rev ; 288(1): 214-239, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30874354

RESUMEN

One of the unusual features of germinal center (GC) B cells is that they manifest many hallmarks of cancer cells. Accordingly, most B-cell neoplasms originate from the GC reaction, and characteristically display abundant point mutations, structural genomic lesions, and clonal diversity from the genetic and epigenetic standpoints. The dominant biological theme of GC-derived lymphomas is mutation of genes involved in epigenetic regulation and immune receptor signaling, which come into play at critical transitional stages of the GC reaction. Hence, mechanistic studies of these mutations reveal fundamental insight into the biology of the normal and malignant GC B cell. The BCL6 transcription factor plays a central role in establishing the GC phenotype in B cells, and most lymphomas are dependent on BCL6 to maintain survival, proliferation, and perhaps immune evasion. Many lymphoma mutations have the commonality of enhancing the oncogenic functions of BCL6, or overcoming some of its tumor suppressive effects. Herein, we discuss how unique features of the GC reaction create vulnerabilities that select for particular lymphoma mutations. We examine the interplay between epigenetic programming, metabolism, signaling, and immune regulatory mechanisms in lymphoma, and discuss how these are leading to novel precision therapy strategies to treat lymphoma patients.


Asunto(s)
Linfocitos B/inmunología , Centro Germinal/inmunología , Linfoma/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Animales , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Inmunidad Humoral , Inmunomodulación , Proteínas Proto-Oncogénicas c-bcl-6/genética , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 115(45): 11603-11607, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30337483

RESUMEN

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.


Asunto(s)
Linfocitos B/inmunología , Genoma Viral , Herpesvirus Gallináceo 2/patogenicidad , Linfoma/patología , Enfermedad de Marek/patología , Virus Oncogénicos/patogenicidad , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Bolsa de Fabricio/inmunología , Bolsa de Fabricio/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Embrión de Pollo , Pollos , ADN Viral/genética , ADN Viral/inmunología , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Recuento de Linfocitos , Linfoma/genética , Linfoma/inmunología , Linfoma/virología , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , Virus Oncogénicos/genética , Virus Oncogénicos/inmunología , Bazo/inmunología , Bazo/virología , Timo/inmunología , Timo/virología , Carga Viral , Virulencia , Replicación Viral
18.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361035

RESUMEN

B lymphocytes are an indispensable part of the human immune system. They are the effective mediators of adaptive immunity and memory. To accomplish specificity against an antigen, and to establish the related immunologic memory, B cells differentiate through a complicated and strenuous training program that is characterized by multiple drastic genomic modifications. In order to avoid malignant transformation, these events are tightly regulated by multiple checkpoints, the vast majority of them involving bioenergetic alterations. Despite this stringent control program, B cell malignancies are amongst the top ten most common worldwide. In an effort to better understand malignant pathobiology, in this review, we summarize the metabolic swifts that govern normal B cell lymphopoiesis. We also review the existent knowledge regarding malignant metabolism as a means to unravel new research goals and/or therapeutic targets.


Asunto(s)
Linfocitos B/metabolismo , Linfoma/metabolismo , Linfopoyesis , Animales , Linfocitos B/citología , Humanos , Linfoma/patología , Efecto Warburg en Oncología
19.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298992

RESUMEN

Non-Hodgkin B-cell lymphomas (NHL) are a heterogeneous group of lymphoid neoplasms with complex etiopathology, rich symptomatology, and a variety of clinical courses, therefore requiring different therapeutic approaches. The hypothesis that an infectious agent may initiate chronic inflammation and facilitate B lymphocyte transformation and lymphogenesis has been raised in recent years. Viruses, like EBV, HTLV-1, HIV, HCV and parasites, like Plasmodium falciparum, have been linked to the development of lymphomas. The association of chronic Helicobacter pylori (H. pylori) infection with mucosa-associated lymphoid tissue (MALT) lymphoma, Borrelia burgdorferi with cutaneous MALT lymphoma and Chlamydophila psittaci with ocular adnexal MALT lymphoma is well documented. Recent studies have indicated that other infectious agents may also be relevant in B-cell lymphogenesis such as Coxiella burnettii, Campylobacter jejuni, Achromobacter xylosoxidans, and Escherichia coli. The aim of the present review is to provide a summary of the current literature on infectious bacterial agents associated with B-cell NHL and to discuss its role in lymphogenesis, taking into account the interaction between infectious agents, host factors, and the tumor environment.


Asunto(s)
Infecciones Bacterianas/complicaciones , Linfoma de Burkitt/microbiología , Infecciones por Helicobacter/microbiología , Interacciones Huésped-Patógeno , Linfoma de Células B de la Zona Marginal/microbiología , Linfoma de Células B Grandes Difuso/microbiología , Infecciones Bacterianas/inmunología , Linfoma de Burkitt/complicaciones , Linfoma de Burkitt/patología , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Linfoma de Células B de la Zona Marginal/complicaciones , Linfoma de Células B de la Zona Marginal/patología , Linfoma de Células B Grandes Difuso/complicaciones , Linfoma de Células B Grandes Difuso/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
20.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638901

RESUMEN

Among the mechanisms leading to progression to Adult T-cell Leukaemia/Lymphoma in Human T-cell Leukaemia Virus type 1 (HTLV-1)-infected subjects, the contribution of stromal components remains poorly understood. To dissect the role of fibroblasts in HTLV-1-mediated lymphomagenesis, transcriptome studies, cytofluorimetric and qRT-PCR analyses of surface and intracellular markers linked to plasticity and stemness in coculture, and in vivo experiments were performed. A transcriptomic comparison between a more lymphomagenic (C91/III) and the parental (C91/PL) cell line evidenced hyperactivation of the PI3K/Akt pathway, confirmed by phospho-ELISA and 2-DE and WB analyses. C91/III cells also showed higher expression of mesenchymal and stemness genes. Short-term coculture with human foreskin fibroblasts (HFF) induced these features in C91/PL cells, and significantly increased not only the cancer stem cells (CSCs)-supporting CD10+GPR77+ HFF subpopulation, but also the percentage of ALDH1bright C91/PL cells. A non-cytotoxic acetylsalicylic acid treatment decreased HFF-induced ALDH1bright C91/PL cells, downregulated mesenchymal and stemness genes in cocultured cells, and delayed lymphoma growth in immunosuppressed mice, thus hindering the supportive activity of HFF on CSCs. These data suggest that crosstalk with HFF significantly intensifies the aggressiveness and plasticity of C91/PL cells, leading to the enrichment in lymphoma-initiating cells. Additional research is needed to better characterize these preliminary findings.


Asunto(s)
Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Linfoma/genética , Células Madre Neoplásicas/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Células Jurkat , Linfoma/tratamiento farmacológico , Linfoma/virología , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/virología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA