Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 634
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127036

RESUMEN

N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.

2.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244546

RESUMEN

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Asunto(s)
Adenosina/análogos & derivados , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Regiones no Traducidas 5' , Microscopía por Crioelectrón , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón Iniciador/genética
3.
Mol Cell ; 83(21): 3818-3834.e7, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37820733

RESUMEN

N6-methyladenosine (m6A) modifications play crucial roles in RNA metabolism. How m6A regulates RNA polymerase II (RNA Pol II) transcription remains unclear. We find that 7SK small nuclear RNA (snRNA), a regulator of RNA Pol II promoter-proximal pausing, is highly m6A-modified in non-small cell lung cancer (NSCLC) cells. In A549 cells, we identified eight m6A sites on 7SK and discovered methyltransferase-like 3 (METTL3) and alkB homolog 5 (ALKBH5) as the responsible writer and eraser. When the m6A-7SK is specifically erased by a dCasRx-ALKBH5 fusion protein, A549 cell growth is attenuated due to reduction of RNA Pol II transcription. Mechanistically, removal of m6A leads to 7SK structural rearrangements that facilitate sequestration of the positive transcription elongation factor b (P-TEFb) complex, which results in reduction of serine 2 phosphorylation (Ser2P) in the RNA Pol II C-terminal domain and accumulation of RNA Pol II in the promoter-proximal region. Taken together, we uncover that m6A modifications of a non-coding RNA regulate RNA Pol II transcription and NSCLC tumorigenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Factor B de Elongación Transcripcional Positiva/genética , Neoplasias Pulmonares/genética , ARN Nuclear Pequeño/genética , Transcripción Genética , Células HeLa , Metiltransferasas/genética , Metiltransferasas/metabolismo
4.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38016476

RESUMEN

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Asunto(s)
Adenina , Cuerpos de Procesamiento , Biosíntesis de Proteínas , Proteínas de Unión al ARN , Humanos , Cromatografía Liquida , Células HeLa , Polirribosomas/genética , Proteómica , ARN Mensajero/genética , Espectrometría de Masas en Tándem , Adenina/análogos & derivados , Adenina/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
Mol Cell ; 82(13): 2370-2384.e10, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35512709

RESUMEN

The p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an m6A RNA-methyltransferase complex (MTC) constituent, as a p53 interactor. We find that METTL3 promotes p53 protein stabilization and target gene expression in response to DNA damage and oncogenic signals, by both catalytic activity-dependent and independent mechanisms. METTL3 also enhances p53 tumor suppressor activity in in vivo mouse cancer models and human cancer cells. Notably, METTL3 only promotes tumor suppression in the context of intact p53. Analysis of human cancer genome data further supports the notion that the MTC reinforces p53 function in human cancer. Together, these studies reveal a fundamental role for METTL3 in amplifying p53 signaling in response to cellular stress.


Asunto(s)
Metiltransferasas , Proteína p53 Supresora de Tumor , Animales , Carcinogénesis , Metiltransferasas/metabolismo , Ratones , ARN , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Mol Cell ; 81(5): 922-939.e9, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33434505

RESUMEN

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells. Mechanistically, R-2HG abrogates fat-mass- and obesity-associated protein (FTO)/N6-methyladenosine (m6A)/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated post-transcriptional upregulation of phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) (two critical glycolytic genes) expression and thereby suppresses aerobic glycolysis. Knockdown of FTO, PFKP, or LDHB recapitulates R-2HG-induced glycolytic inhibition in (R-2HG-sensitive) leukemia cells, but not in normal CD34+ hematopoietic stem/progenitor cells, and inhibits leukemogenesis in vivo; conversely, their overexpression reverses R-2HG-induced effects. R-2HG also suppresses glycolysis and downregulates FTO/PFKP/LDHB expression in human primary IDH-wild-type acute myeloid leukemia (AML) cells, demonstrating the clinical relevance. Collectively, our study reveals previously unrecognized effects of R-2HG and RNA modification on aerobic glycolysis in leukemia, highlighting the therapeutic potential of targeting cancer epitranscriptomics and metabolism.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Antineoplásicos/farmacología , Glutaratos/farmacología , Glucólisis/genética , Lactato Deshidrogenasas/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Fosfofructoquinasa-1 Tipo C/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Células K562 , Lactato Deshidrogenasas/antagonistas & inhibidores , Lactato Deshidrogenasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa/efectos de los fármacos , Fosfofructoquinasa-1 Tipo C/antagonistas & inhibidores , Fosfofructoquinasa-1 Tipo C/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Cell ; 74(3): 494-507.e8, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30930054

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification in RNAs and plays regulatory roles in a variety of biological and physiological processes. Despite its important roles, the molecular mechanism underlying m6A-mediated gene regulation is poorly understood. Here, we show that m6A-containing RNAs are subject to endoribonucleolytic cleavage via YTHDF2 (m6A reader protein), HRSP12 (adaptor protein), and RNase P/MRP (endoribonucleases). We demonstrate that HRSP12 functions as an adaptor to bridge YTHDF2 and RNase P/MRP, eliciting rapid degradation of YTHDF2-bound RNAs. Transcriptome-wide analyses show that m6A RNAs that are preferentially targeted for endoribonucleolytic cleavage have an HRSP12-binding site and a RNase P/MRP-directed cleavage site upstream and downstream of the YTHDF2-binding site, respectively. We also find that a subset of m6A-containing circular RNAs associates with YTHDF2 in an HRSP12-dependent manner and is selectively downregulated by RNase P/MRP. Thus, our data expand the known functions of RNase P/MRP to endoribonucleolytic cleavage of m6A RNAs.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Choque Térmico/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Ribonucleasas/genética , Adenosina/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Sitios de Unión/genética , Escherichia coli/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Metiltransferasas/genética , ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN Circular , Transcriptoma/genética
8.
Proc Natl Acad Sci U S A ; 121(25): e2320782121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875150

RESUMEN

Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.


Asunto(s)
Adenosina , Replicación del ADN , ADN Viral , ADN Polimerasa Dirigida por ADN , ARN Viral , Replicación Viral , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Replicación Viral/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Viral/genética , ADN Viral/metabolismo , Células HEK293 , ARN Viral/genética , ARN Viral/metabolismo , Bocavirus Humano/genética , Bocavirus Humano/metabolismo , Genoma Viral/genética , Infecciones por Parvoviridae/virología
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38622358

RESUMEN

N6-methyladenosine (m6A) is the most abundant mRNA modification within mammalian cells, holding pivotal significance in the regulation of mRNA stability, translation and splicing. Furthermore, it plays a critical role in the regulation of RNA degradation by primarily recruiting the YTHDF2 reader protein. However, the selective regulation of mRNA decay of the m6A-methylated mRNA through YTHDF2 binding is poorly understood. To improve our understanding, we developed m6A-BERT-Deg, a BERT model adapted for predicting YTHDF2-mediated degradation of m6A-methylated mRNAs. We meticulously assembled a high-quality training dataset by integrating multiple data sources for the HeLa cell line. To overcome the limitation of small training samples, we employed a pre-training-fine-tuning strategy by first performing a self-supervised pre-training of the model on 427 760 unlabeled m6A site sequences. The test results demonstrated the importance of this pre-training strategy in enabling m6A-BERT-Deg to outperform other benchmark models. We further conducted a comprehensive model interpretation and revealed a surprising finding that the presence of co-factors in proximity to m6A sites may disrupt YTHDF2-mediated mRNA degradation, subsequently enhancing mRNA stability. We also extended our analyses to the HEK293 cell line, shedding light on the context-dependent YTHDF2-mediated mRNA degradation.


Asunto(s)
Adenina , Proteínas de Unión al ARN , Factores de Transcripción , Animales , Humanos , Células HEK293 , Células HeLa , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
10.
Genes Dev ; 32(23-24): 1472-1484, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463905

RESUMEN

Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3' untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNß production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.


Asunto(s)
ADN/inmunología , Regulación de la Expresión Génica/genética , Sistema Inmunológico/enzimología , Inmunidad Innata/genética , Interferón beta/genética , Metiltransferasas/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Citomegalovirus/inmunología , Perfilación de la Expresión Génica , Humanos , Interferón beta/metabolismo , Estabilidad del ARN/genética , Células Vero , Replicación Viral/genética
11.
J Biol Chem ; 300(5): 107226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537697

RESUMEN

Epstein-Barr virus (EBV) is a human tumor virus associated with a variety of malignancies, including nasopharyngeal carcinoma, gastric cancers, and B-cell lymphomas. N6-methyladenosine (m6A) modifications modulate a wide range of cellular processes and participate in the regulation of virus-host cell interactions. Here, we discovered that EBV infection downregulates toll-like receptor 9 (TLR9) m6A modification levels and thus inhibits TLR9 expression. TLR9 has multiple m6A modification sites. Knockdown of METTL3, an m6A "writer", decreases TLR9 protein expression by inhibiting its mRNA stability. Mechanistically, Epstein-Barr nuclear antigen 1 increases METTL3 protein degradation via K48-linked ubiquitin-proteasome pathway. Additionally, YTHDF1 was identified as an m6A "reader" of TLR9, enhancing TLR9 expression by promoting mRNA translation in an m6A -dependent manner, which suggests that EBV inhibits TLR9 translation by "hijacking" host m6A modification mechanism. Using the METTL3 inhibitor STM2457 inhibits TLR9-induced B cell proliferation and immunoglobulin secretion, and opposes TLR9-induced immune responses to assist tumor cell immune escape. In clinical lymphoma samples, the expression of METTL3, YTHDF1, and TLR9 was highly correlated with immune cells infiltration. This study reveals a novel mechanism that EBV represses the important innate immunity molecule TLR9 through modulating the host m6A modification system.


Asunto(s)
Adenosina , Herpesvirus Humano 4 , Metiltransferasas , Proteínas de Unión al ARN , Receptor Toll-Like 9 , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/inmunología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Evasión Inmune , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Línea Celular Tumoral
12.
J Biol Chem ; : 107721, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214307

RESUMEN

Obesity has emerged as a major health risk on a global scale. Hinokiflavone (HF), a natural small molecule, extracted from plants like cypress, exhibits diverse chemical structures and low synthesis costs. Using high-fat diet (HFD)-induced obese mice models, we found that HF suppresses obesity by inducing apoptosis in adipose tissue. Adipocyte apoptosis helps maintain tissue health by removing aging, damaged, or excess cells in adipose tissue, which is crucial in preventing obesity and metabolic diseases. We found that HF can specifically bind to insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) to promote the stability of N6-methyladenosine (m6A) -modified Bim, inducing mitochondrial outer membrane permeabilization (MOMP). MOMP leads to Caspase9/3-mediated adipocyte mitochondrial apoptosis, alleviating obesity induced by a high-fat diet. The pro-apoptotic effect of HF offers a controlled means for weight loss. This study reveals the potential of small molecule HF in developing new therapeutic approaches in drug development and biomedical research.

13.
Trends Genet ; 38(4): 325-332, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34920906

RESUMEN

N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.


Asunto(s)
Adenosina , Núcleo Celular , Transporte Activo de Núcleo Celular/genética , Adenosina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Trends Genet ; 38(11): 1099-1100, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35792016

RESUMEN

A recent study by Hu et al. describes N6-methyladenosine (m6A)-selective allyl chemical labeling and sequencing (m6A-SAC-seq), which allows for quantitative, stoichiometric, and positional analyses of m6A at single-nucleotide resolution across the whole transcriptome level. Information on the m6A stoichiometry will provide additional layers of gene regulatory pathways mediated by m6A modification during diverse molecular, cellular, and physiological events.


Asunto(s)
Adenosina , Transcriptoma , Adenosina/genética , Adenosina/metabolismo , Nucleótidos , Transcriptoma/genética
15.
EMBO J ; 40(8): e106276, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33729590

RESUMEN

Dynamic chemical modifications of RNA represent novel and fundamental mechanisms that regulate stemness and tissue homeostasis. Rejuvenation and wound repair of mammalian skin are sustained by epidermal progenitor cells, which are localized within the basal layer of the skin epidermis. N6 -methyladenosine (m6 A) is one of the most abundant modifications found in eukaryotic mRNA and lncRNA (long noncoding RNA). In this report, we survey changes of m6 A RNA methylomes upon epidermal differentiation and identify Pvt1, a lncRNA whose m6 A modification is critically involved in sustaining stemness of epidermal progenitor cells. With genome-editing and a mouse genetics approach, we show that ablation of m6 A methyltransferase or Pvt1 impairs the self-renewal and wound healing capability of skin. Mechanistically, methylation of Pvt1 transcripts enhances its interaction with MYC and stabilizes the MYC protein in epidermal progenitor cells. Our study presents a global view of epitranscriptomic dynamics that occur during epidermal differentiation and identifies the m6 A modification of Pvt1 as a key signaling event involved in skin tissue homeostasis and wound repair.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Células Epidérmicas/citología , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Células Madre/citología , Adenosina/metabolismo , Animales , Células Cultivadas , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiología , Cobayas , Metiltransferasas/genética , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante/genética , Células Madre/metabolismo , Células Madre/fisiología , Cicatrización de Heridas
16.
EMBO J ; 40(15): e107976, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34184765

RESUMEN

Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress-inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature-dependent Ser/Arg-rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA-binding proteins revealed HSATIII association with proteins related to N6 -methyladenosine (m6 A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6 A-modified. nSBs sequester the m6 A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6 A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6 A modification of pre-mRNAs, leading to repression of m6 A-dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature-dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6 A-modified architectural lncRNAs.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Factores de Empalme de ARN/genética , Empalme del ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Temperatura
17.
Exp Cell Res ; 442(1): 114190, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098467

RESUMEN

BACKGROUND: Ferroptotic proteins are promising therapeutic targets for lung cancer. The PROM2 is upregulated in lung cancer and known to suppress ferroptosis. This study examined the molecular mechanisms for PROM2-induced ferroptosis resistance in lung cancer. METHODS: Ferroptosis in lung cancer was assessed by iron kit, and transmission electron microscopy was applied to observe the changes in mitochondrial morphology. BODIPY™ was applied to test the lipid ROS, and MeRIP was performed to test the m6A modification of PROM2. RIP assay was employed for confirming the binding between METTL3 and PROM2. In addition, dual luciferase assay was employed for exploring the transcriptional regulation of ATF1 to METTL3, and the binding relation between ATF1 and METTL3 promoter region was explored by ChIP assay. RESULTS: Expression levels of PROM2 were significantly higher in lung cancer cell lines than a noncancerous control line, and PROM2 knockdown significantly reduced both cancer cell viability and proliferation rate. In addition, PROM2 knockdown reduced xenograft tumor growth and exacerbated erastin-induced ferroptosis. Compared to PROM2 mRNA from control cells, transcripts in lung cancer cells exhibited enhanced m6A levels, and showed greater binding with METTL3. Further, ATF1 upregulated METTL3 transcription, thereby stabilizing PROM2 mRNA and increasing ferroptosis resistance. CONCLUSION: ATF1 could promote ferroptosis resistance in lung cancer through enhancing mRNA stability of PROM2. Thus, our work might shed novel insights on discovering therapeutic strategy for lung cancer.


Asunto(s)
Ferroptosis , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Estabilidad del ARN , Ferroptosis/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Estabilidad del ARN/genética , Animales , Ratones , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Células A549
18.
Exp Cell Res ; 442(1): 114219, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182664

RESUMEN

N6-methyladenosine (m6A) modification plays an important role in RNA molecular functions, therefore affecting the initiation and development of hepatocellular carcinoma (HCC). Herein, multiple datasets were applied to conduct a comprehensive analysis of DEGs within HCC and the analysis revealed significant dysregulation of numerous genes. Functional and signaling pathway enrichment analyses were performed. Further, TP53RK binding protein (TPRKB) emerged as a significant factor, exhibiting high expression level within HCC tissue samples and cells which could predict HCC patients' poor OS. Knockdown investigations of TPRKB in vitro demonstrated the effect of TPRKB knockdown on attenuating the aggressiveness of HCC cells by suppressing the viability, colony formation, invasive ability, and migratory ability, inducing cell cycle arrest, and facilitating the apoptosis of HCC cells. Investigations in vivo revealed that TPRKB knockdown significantly suppressed tumor growth in mice model. Additionally, the study identified methyltransferase 5, N6-adenosine (METTL5) as a potential regulator of TPRKB expression via m6A modification, positively regulating TPRKB expression by enhancing TPRKB mRNA stability. The dynamic effects of METTL5 and TPRKB upon the phenotypes of HCC cells further confirmed that TPRKB overexpression partially abolished the anti-cancer effects of METTL5 knockdown upon the aggressiveness of HCC cells. Conclusively, our findings uncover that TPRKB, significantly overexpressed in HCC, exerts a critical effect on promoting tumor aggressiveness, and its expression shows to be positively regulated by METTL5 via m6A methylation. These insights deepen the understanding of HCC pathogenesis and open new avenues for targeted therapies, highlighting that METTL5-TPRKB axis is an underlying new therapeutic target in HCC management.


Asunto(s)
Adenosina , Carcinoma Hepatocelular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Metiltransferasas , Estabilidad del ARN , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Animales , Ratones , Regulación Neoplásica de la Expresión Génica/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Estabilidad del ARN/genética , Proliferación Celular/genética , Apoptosis/genética , Ratones Desnudos , Línea Celular Tumoral , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Movimiento Celular/genética , Ratones Endogámicos BALB C , Proteínas de Unión al ARN
19.
Cell Mol Life Sci ; 81(1): 17, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196046

RESUMEN

Mesenchymal stem cells (MSCs) hold immense potential as multipotent stem cells and serve as a primary source of adipocytes. The process of MSC adipogenesis plays a crucial role in maintaining systemic metabolic homeostasis and has garnered significant attention in tissue bioengineering. N6-methyladenosine (m6A), the most prevalent RNA modification, is known to regulate cell fate and disease. However, the precise involvement of m6A readers in MSC adipogenesis remains unclear. In this study, we investigated the impact of IGF2BP3, a prominent m6A reader, on MSC adipogenesis. Our findings revealed a decrease in IGF2BP3 expression during the natural adipogenic differentiation of MSCs. Furthermore, IGF2BP3 was found to repress MSC adipogenesis by augmenting the levels of MYLK, a calcium/calmodulin-dependent kinase. Mechanistically, IGF2BP3 interacted with MYLK mRNA in an m6A-dependent manner, extending its half-life and subsequently inhibiting the phosphorylation of the ERK1/2 pathway, thereby impeding the adipogenic differentiation of MSCs. Additionally, we successfully achieved the overexpression of IGF2BP3 through intraperitoneal injection of adeno-associated virus serotype Rec2, which specifically targeted adipose tissue. This intervention resulted in reduced body weight and improved insulin resistance in high-fat diet mice. Overall, our study provides novel insights into the role of IGF2BP3 in MSC adipogenesis, shedding light on adipocyte-related disorders and presenting potential targets for related biomedical applications.


Asunto(s)
Adipogénesis , Resistencia a la Insulina , Quinasa de Cadena Ligera de Miosina , Proteínas de Unión al ARN , Animales , Ratones , Adipogénesis/genética , Peso Corporal , Diferenciación Celular , Obesidad/genética , Quinasa de Cadena Ligera de Miosina/genética , Proteínas de Unión al ARN/genética
20.
Cell Mol Life Sci ; 81(1): 92, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363375

RESUMEN

The maintenance of genome integrity in the germline is crucial for mammalian development. Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element that makes up about 17% of the human genome and poses a threat to genome integrity. N6-methyl-adenosine (m6A) plays an essential role in regulating various biological processes. However, the function of m6A modification in L1 retrotransposons and human germline development remains largely unknown. Here we knocked out the m6A methyltransferase METTL3 or the m6A reader YTHDF2 in human embryonic stem cells (hESCs) and discovered that METTL3 and YTHDF2 are crucial for inducing human spermatogonial stem cells (hSSCs) from hESCs in vitro. The removal of METTL3 or YTHDF2 resulted in increased L1 retrotransposition and reduced the efficiency of SSC differentiation in vitro. Further analysis showed that YTHDF2 recognizes the METTL3-catalyzed m6A modification of L1 retrotransposons and degrades L1 mRNA through autophagy, thereby blocking L1 retrotransposition. Moreover, the study confirmed that m6A modification in human fetal germ cells promotes the degradation of L1 retrotransposon RNA, preventing the insertion of new L1 retrotransposons into the genome. Interestingly, L1 retrotransposon RNA was highly expressed while METTL3 was significantly downregulated in the seminal plasma of azoospermic patients with meiotic arrest compared to males with normal fertility. Additionally, we identified some potentially pathogenic variants in m6A-related genes in azoospermic men with meiotic arrest. In summary, our study suggests that m6A modification serves as a guardian of genome stability during human germline development and provides novel insights into the function and regulatory mechanisms of m6A modification in restricting L1 retrotransposition.


Asunto(s)
Azoospermia , Retroelementos , Masculino , Animales , Humanos , Retroelementos/genética , ARN , Azoospermia/genética , Diferenciación Celular/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA