RESUMEN
X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.
Asunto(s)
Complejo Mediador/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Epigénesis Genética , Humanos , ARN Largo no Codificante/genética , Inactivación del Cromosoma XRESUMEN
Regulation of biological processes typically incorporates mechanisms that initiate and terminate the process and, where understood, these mechanisms often involve feedback control. Regulation of transcription is a fundamental cellular process where the mechanisms involved in initiation have been studied extensively, but those involved in arresting the process are poorly understood. Modeling of the potential roles of RNA in transcriptional control suggested a non-equilibrium feedback control mechanism where low levels of RNA promote condensates formed by electrostatic interactions whereas relatively high levels promote dissolution of these condensates. Evidence from in vitro and in vivo experiments support a model where RNAs produced during early steps in transcription initiation stimulate condensate formation, whereas the burst of RNAs produced during elongation stimulate condensate dissolution. We propose that transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs initially stimulate but then ultimately arrest the process.
Asunto(s)
Retroalimentación Fisiológica , ARN/genética , Transcripción Genética , Animales , Complejo Mediador/metabolismo , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , ARN/biosíntesis , Electricidad EstáticaRESUMEN
Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.
Asunto(s)
Anafilaxia , Fibroblastos , Lisofosfolípidos , Mastocitos , Ratones Noqueados , Comunicación Paracrina , Hidrolasas Diéster Fosfóricas , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Animales , Mastocitos/inmunología , Mastocitos/metabolismo , Anafilaxia/inmunología , Anafilaxia/metabolismo , Ratones , Fibroblastos/metabolismo , Lisofosfolípidos/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Prostaglandina D2/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-33/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diferenciación Celular , Ratones Endogámicos C57BL , Proteína 1 Similar al Receptor de Interleucina-1 , LipocalinasRESUMEN
Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well characterized, but little is known about the mechanisms by which ADs effect gene activation. Here, we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.
Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores de Estrógenos/metabolismo , Activación Transcripcional/fisiología , Animales , Células HEK293 , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Dominios Proteicos , Receptores de Estrógenos/genéticaRESUMEN
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Asunto(s)
Microscopía por Crioelectrón , Quinasa 8 Dependiente de Ciclina , Complejo Mediador , ARN Polimerasa II , Humanos , Complejo Mediador/metabolismo , Complejo Mediador/genética , Complejo Mediador/química , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/química , Sitios de Unión , Unión Proteica , Transcripción Genética , Modelos Moleculares , Relación Estructura-Actividad , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genéticaRESUMEN
Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.
Asunto(s)
Histonas , Óxido Nítrico , Histonas/genética , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Óxido Nítrico/metabolismo , Complejo Mediador/metabolismo , Oxidorreductasas/metabolismoRESUMEN
The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.
Asunto(s)
Microscopía por Crioelectrón , Quinasa 8 Dependiente de Ciclina , Complejo Mediador , Unión Proteica , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Complejo Mediador/metabolismo , Complejo Mediador/genética , Complejo Mediador/química , Humanos , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Animales , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Sitios de Unión , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Células HEK293 , Dominios y Motivos de Interacción de ProteínasRESUMEN
Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.
Asunto(s)
Quinasa Activadora de Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes , Regiones Promotoras Genéticas , ARN Polimerasa II , Iniciación de la Transcripción Genética , Humanos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Complejo Mediador/metabolismo , Complejo Mediador/genética , Células HeLa , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Células HEK293RESUMEN
RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.
Asunto(s)
Linaje de la Célula , ADN Helicasas , Elementos de Facilitación Genéticos , Proteínas Nucleares , Factores de Transcripción , Animales , Humanos , Linaje de la Célula/genética , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.
Asunto(s)
Complejo Mediador/química , Complejo Mediador/metabolismo , Modelos Moleculares , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , Regulación de la Expresión Génica , Espectrometría de Masas , Fosforilación , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.
Asunto(s)
Precursores del ARN , Factores de Transcripción , Animales , Ratones , Proteínas de Unión al ADN/genética , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión a Caperuzas de ARN/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with â¼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa II/metabolismo , Microscopía por Crioelectrón , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética , Complejo Mediador/genética , Iniciación de la Transcripción GenéticaRESUMEN
Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Neoplasias Colorrectales/enzimología , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Quinasa 8 Dependiente de Ciclina/genética , Quinasas Ciclina-Dependientes/genética , Elementos de Facilitación Genéticos , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Complejo Mediador/antagonistas & inhibidores , Complejo Mediador/genética , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Carga Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Mediator (MED) is a conserved factor with important roles in basal and activated transcription. Here, we investigate the genome-wide roles of yeast MED by rapid depletion of its activator-binding domain (Tail) and monitoring changes in nascent transcription. Rapid Tail depletion surprisingly reduces transcription from only a small subset of genes. At most of these Tail-dependent genes, in unperturbed conditions, MED is detected at both the UASs and promoters. In contrast, at most Tail-independent genes, we find MED primarily at promoters but not at the UASs. These results suggest that MED Tail and activator-mediated MED recruitment regulates only a small subset of genes. Furthermore, we define three classes of genes that differ in PIC assembly pathways and the requirements for MED Tail, SAGA, TFIID, and BET factors Bdf1/2. Our combined results have broad implications for the roles of MED, other coactivators, and mechanisms of transcriptional regulation at different gene classes.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Regiones Promotoras Genéticas , Factor de Transcripción TFIID/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Mammalian developmental and disease-associated genes concentrate large quantities of the transcriptional machinery by forming membrane-less compartments known as transcriptional condensates. However, it is unknown whether these structures are evolutionarily conserved or involved in 3D genome reorganization. Here, we identify inducible transcriptional condensates in the yeast heat shock response (HSR). HSR condensates are biophysically dynamic spatiotemporal clusters of the sequence-specific transcription factor heat shock factor 1 (Hsf1) with Mediator and RNA Pol II. Uniquely, HSR condensates drive the coalescence of multiple Hsf1 target genes, even those located on different chromosomes. Binding of the chaperone Hsp70 to a site on Hsf1 represses clustering, whereas an intrinsically disordered region on Hsf1 promotes condensate formation and intergenic interactions. Mutation of both Hsf1 determinants reprograms HSR condensates to become constitutively active without intergenic coalescence, which comes at a fitness cost. These results suggest that transcriptional condensates are ancient and flexible compartments of eukaryotic gene control.
Asunto(s)
Respuesta al Choque Térmico , Cuerpos Nucleares , Animales , Respuesta al Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/genética , Mamíferos , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , GenomaRESUMEN
Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.
Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética/fisiología , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Complejo Mediador/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Espacio-Temporal , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIID/genética , Transcripción Genética/genéticaRESUMEN
Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.
Asunto(s)
Subunidad 1 del Complejo Mediador/metabolismo , Aminoácidos/genética , Conformación Proteica , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genéticaRESUMEN
Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Knowledge of how Mediator and TFIID cross-talk contributes to promoter-enhancer (P-E) communication is important for elucidating the mechanism of enhancer function. We conducted an shRNA knockdown screen in murine embryonic stem cells to identify the functional overlap between Mediator and TFIID subunits on gene expression. Auxin-inducible degrons were constructed for TAF12 and MED4, the subunits eliciting the greatest overlap. Degradation of TAF12 led to a dramatic genome-wide decrease in gene expression accompanied by destruction of TFIID, loss of Pol II preinitiation complex (PIC) at promoters, and significantly decreased Mediator binding to promoters and enhancers. Interestingly, loss of the PIC elicited only a mild effect on P-E looping by promoter capture Hi-C (PCHi-C). Degradation of MED4 had a minor effect on Mediator integrity but led to a consistent twofold loss in gene expression, decreased binding of Pol II to Mediator, and decreased recruitment of Pol II to the promoters, but had no effect on the other PIC components. PCHi-C revealed no consistent effect of MED4 degradation on P-E looping. Collectively, our data show that TAF12 and MED4 contribute mechanistically in different ways to P-E communication but neither factor appears to directly control P-E looping, thereby dissociating P-E communication from physical looping.
Asunto(s)
ARN Polimerasa II , Factor de Transcripción TFIID , Animales , Complejo Mediador/genética , Complejo Mediador/metabolismo , Ratones , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIID/genética , Transcripción GenéticaRESUMEN
MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our ï¬ndings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.