Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
2.
Neurobiol Dis ; 181: 106110, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001614

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive paralysis of limbs and bulb in patients, the cause of which remains unclear. Accumulating studies suggest that motor neuron degeneration is associated with systemic metabolic impairment in ALS. However, the metabolic reprogramming and underlying mechanism in the longitudinal progression of the disease remain poorly understood. In this study, we aimed to investigate the molecular changes at both metabolic and proteomic levels during disease progression to identify the most critical metabolic pathways and underlying mechanisms involved in ALS pathophysiological changes. Utilizing liquid chromatography-mass spectrometry-based metabolomics, we analyzed the metabolites' levels of plasma, lumbar spinal cord, and motor cortex from SOD1G93A mice and wildtype (WT) littermates at different stages. To elucidate the regulatory network underlying metabolic changes, we further analyzed the proteomics profile in the spinal cords of SOD1G93A and WT mice. A group of metabolites implicated in purine metabolism, methionine cycle, and glycolysis were found differentially expressed in ALS mice, and abnormal expressions of enzymes involved in these metabolic pathways were also confirmed. Notably, we first demonstrated that dysregulation of purine metabolism might contribute to the pathogenesis and disease progression of ALS. Furthermore, we discovered that fatty acid metabolism, TCA cycle, arginine and proline metabolism, and folate-mediated one­carbon metabolism were also significantly altered in this disease. The identified differential metabolites and proteins in our study could complement existing data on metabolic reprogramming in ALS, which might provide new insight into the pathological mechanisms and novel therapeutic targets of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolómica , Ratones Transgénicos , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Purinas , Médula Espinal/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
3.
Biochem Biophys Res Commun ; 686: 149152, 2023 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-37926042

RESUMEN

S-adenosylhomocysteine (SAH) hydrolase is the enzyme responsible for breaking down SAH into adenosine and homocysteine. It has long been believed that a deficiency of this enzyme leads to SAH accumulation, subsequently inhibiting methyltransferases responsible for nucleic acids and proteins, which severely affects cell proliferation. To investigate whether targeting this enzyme could be a viable strategy to combat Trypanosoma brucei, the causative agent of human African trypanosomiasis, we created a null mutant of the SAH hydrolase gene in T. brucei using the Cre/loxP system and conducted a phenotype analysis. Surprisingly, the null mutant, where all five SAH hydrolase gene loci were deleted, exhibited normal proliferation despite the observed SAH accumulation. These findings suggest that inhibiting SAH hydrolase may not be an effective approach to suppressing T. brucei proliferation, making the enzyme a less promising target for antitrypanosome drug development.


Asunto(s)
Trypanosoma brucei brucei , Humanos , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , S-Adenosilhomocisteína/metabolismo , Adenosina/genética , Adenosina/farmacología
4.
BMC Cancer ; 23(1): 800, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633908

RESUMEN

BACKGROUND: Pemetrexed is an efficacious multi-targeted antifolate with acceptable toxicity for non-squamous non-small cell lung cancer (non-Sq NSCLC) and malignant pleural mesothelioma. Vitamin B12 and folic acid as premedication can reduce the frequency of severe toxicities of pemetrexed chemotherapy. However, adverse effects are frequent in clinical settings. In this study, we aimed to identify the clinical factors and single-nucleotide polymorphisms (SNPs) associated with the toxicity and efficacy of pemetrexed chemotherapy. METHODS: This observational study was conducted from October 2012 to December 2019; we evaluated the toxicities and efficacies of pemetrexed chemotherapy using multivariate logistic or Cox regression analysis. In total, 106 patients received pemetrexed chemotherapy. SNPs were analyzed for four patients with malignant pleural mesothelioma and 67 with non-Sq NSCLC. RESULTS: The median progression-free survival (PFS) and overall survival of 63 patients with non-Sq NSCLC, excluding four in the adjuvant setting, were 6.8 and 33.3 months, respectively. Per propensity-score-adjusted multivariate Cox analyses, favorable factors for PFS were folic acid level ≥ 9.3 ng/mL before premedication, platinum combination, bevacizumab combination, vitamin B12 level < 1136 pg/mL before chemotherapy, A/A + A/G of BHMT (742 G > A), and A/A + A/C of DHFR (680 C > A). Favorable prognostic factors included good performance status, low smoking index, body mass index ≥ 20.66 kg/m2, folic acid level ≥ 5.55 ng/mL before premedication, higher retinol-binding protein before chemotherapy, and A/G of MTRR (66 A > G). Among the 71 patients who were analyzed for SNPs, the frequencies of hematologic toxicities and non-hematologic toxicities in Grades 3-4 were 38% and 36.6%, respectively. Per propensity-score-adjusted multivariate logistic analyses, risk factors for Grades 3-4 hematologic toxicities were vitamin B12 level < 486 pg/mL before premedication, leucocyte count < 6120 /µL before chemotherapy, folic acid level < 15.8 ng/mL before chemotherapy, status with a reduced dose of chemotherapy, and C/T + T/T of MTHFR (677 C > T). Risk factors for Grades 2-4 non-hematologic toxicities were homocysteine levels ≥ 11.8 nmol/mL before premedication, transthyretin level < 21.5 mg/dL before chemotherapy, C/C + T/T of MTHFR (677 C > T), and A/A + G/G of SLC19A1 [IVS2 (4935) G > A]. CONCLUSION: The information on metabolites and SNPs of the folate and methionine cycle will help predict the toxicities and efficacies of pemetrexed. TRIAL REGISTRATION: This trial was retrospectively registered with the University hospital Medical Information Network (UMIN000009366) on November 20, 2012.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mesotelioma Maligno , Humanos , Pemetrexed/efectos adversos , Polimorfismo de Nucleótido Simple , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ácido Fólico
5.
Br J Nutr ; 127(2): 202-213, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33749566

RESUMEN

Commercial diets for tilapia juveniles contain high levels of plant protein sources. Soybean meal has been utilised due to its high protein content; however, soy-based diets are limited in methionine (Met) and require its supplementation to fulfil fish requirements. dl-Methinone (dl-Met) and Ca bis-methionine hydroxyl analogue (MHA-Ca) are synthetic Met sources supplemented in aquafeeds, which may differ in biological efficiency due to structural differences. The present study evaluated the effect of both methionine sources on metabolism and growth of Nile tilapia. A growth trial was performed using three isonitrogenous and isoenergetic diets, containing plant ingredients as protein sources: DLM and MHA diets were supplemented on equimolar levels of Met, while REF diet was not supplemented. Hepatic free Met and one-carbon metabolites were determined in fish fed for 57 d. Metabolism of dl-Met and MHA was analysed by an in vivo time-course trial using 14C-labelled tracers. Only dl-Met supplementation significantly increased final body weight and improved feed conversion and protein efficiency ratios compared with the REF diet. Our findings indicate that Met in DLM fed fish follows the transsulphuration pathway, while in fish fed MHA and REF diets it is remethylated. The in vivo trial revealed that 14C-dl-Met is absorbed faster and more retained than 14C-MHA, resulting in a greater availability of free Met in the tissues when fish is fed with DLM diet. Our study indicates that dietary dl-Met supplementation improves growth performance and N retention, and that Met absorption and utilisation are influenced by the dietary source in tilapia juveniles.


Asunto(s)
Alimentación Animal , Cíclidos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Metionina/metabolismo
6.
Nutr Neurosci ; 25(7): 1495-1508, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33494658

RESUMEN

BACKGROUND: Homocysteine (Hcy) and folate, involved in a common metabolic pathway supplying essential methyl groups for DNA and protein synthesis, have been found to be associated with cognitive function. Moreover, diet may influence methionine cycle metabolites (MCM) as well as mild cognitive impairment (MCI), but MCM-related dietary patterns are unclear in an older population. OBJECTIVE: The study aimed to identify MCM-related dietary patterns of older Chinese adults, and examine their association with the prevalence of MCI in a large population-based study. METHODS: This study included 4457 participants ≥ 60 years of age from the Tianjin Elderly Nutrition and Cognition Cohort study. Dietary data were collected using a valid self-administered food frequency questionnaire, and factor analysis was used to identify major dietary patterns in the population. MCM-based dietary patterns were derived using reduced rank regression (RRR) based on serum folate and Hcy as response variables. RESULTS: Compared with the participants in the lowest quartile of vegetarian pattern and processed foods pattern, the odds ratios (ORs) of MCI in the highest quartile were 0.72 (95% CI 0.53-0.98) and 1.39 (95% CI 1.03-1.88), respectively. In the MCM-based dietary patterns derived using RRR, the ORs for MCI for the highest quartile of MCM patterns I and II were 0.58 (95% CI 0.44-0.78) and 1.38 (95% CI 1.04-1.83), respectively, compared with participants in the lower quartile. CONCLUSIONS: Findings from this large population-based study suggested that adopting an MCM-related dietary pattern, especially avoiding processed foods, can decrease the occurrence of MCI.


Asunto(s)
Disfunción Cognitiva , Metionina , Anciano , China/epidemiología , Disfunción Cognitiva/epidemiología , Estudios de Cohortes , Estudios Transversales , Dieta , Ácido Fólico , Humanos , Persona de Mediana Edad , Factores de Riesgo
7.
Genomics ; 113(5): 3357-3372, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339815

RESUMEN

The combined effect of iron (Fe) and zinc (Zn) starvation on their uptake and transportation and the molecular regulatory networks is poorly understood in wheat. To fill this gap, we performed a comprehensive physiological, biochemical and transcriptome analysis in two bread wheat genotypes, i.e. Narmada 195 and PBW 502, differing in inherent Fe and Zn content. Compared to PBW 502, Narmada 195 exhibited increased tolerance to Fe and Zn withdrawal by significantly modulating the critical physiological and biochemical parameters. We identified 25 core genes associated with four key pathways, i.e. methionine cycle, phytosiderophore biosynthesis, antioxidant and transport system, that exhibited significant up-regulation in both the genotypes with a maximum in Narmada 195. We also identified 26 microRNAs targeting 14 core genes across the four pathways. Together, core genes identified can serve as valuable resources for further functional research for genetic improvement of Fe and Zn content in wheat grain.


Asunto(s)
Triticum , Zinc , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transcriptoma , Triticum/genética , Triticum/metabolismo , Zinc/metabolismo
8.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008908

RESUMEN

The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Glicina N-Metiltransferasa/genética , Neoplasias Hepáticas/genética , Metionina Adenosiltransferasa/genética , Metionina/metabolismo , Biosíntesis de Proteínas , Secuencia de Bases , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Glicina N-Metiltransferasa/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Metionina Adenosiltransferasa/metabolismo , Invasividad Neoplásica , Factor 1 de Elongación Peptídica/metabolismo , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/genética , Análisis de Supervivencia
9.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163841

RESUMEN

Metabolic reprogramming is a hallmark of cancer. Cancer cells rewire one-carbon metabolism, a central metabolic pathway, to turn nutritional inputs into essential biomolecules required for cancer cell growth and maintenance. Radiation therapy, a common cancer therapy, also interacts and alters one-carbon metabolism. This review discusses the interactions between radiation therapy, one-carbon metabolism and its component metabolic pathways.


Asunto(s)
Carbono/metabolismo , Redes y Vías Metabólicas/efectos de la radiación , Neoplasias/radioterapia , Ácido Fólico/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Metionina/metabolismo , Neoplasias/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012717

RESUMEN

The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.


Asunto(s)
Braquiuros , Ácidos Grasos Insaturados , Animales , Braquiuros/genética , Braquiuros/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Metionina/metabolismo , Filogenia
11.
Mol Genet Metab ; 132(2): 128-138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33483253

RESUMEN

Cystathionine beta-synthase deficient homocystinuria (HCU) is a life-threatening disorder of sulfur metabolism. Our knowledge of the metabolic changes induced in HCU are based almost exclusively on data derived from plasma. In the present study, we present a comprehensive analysis on the effects of HCU upon the hepatic metabolites and enzyme expression levels of the methionine-folate cycles in a mouse model of HCU. HCU induced a 10-fold increase in hepatic total homocysteine and in contrast to plasma, this metabolite was only lowered by approximately 20% by betaine treatment indicating that this toxic metabolite remains unacceptably elevated. Hepatic methionine, S-adenosylmethionine, S-adenosylhomocysteine, N-acetlymethionine, N-formylmethionine, methionine sulfoxide, S-methylcysteine, serine, N-acetylserine, taurocyamine and N-acetyltaurine levels were also significantly increased by HCU while cysteine, N-acetylcysteine and hypotaurine were all significantly decreased. In terms of polyamine metabolism, HCU significantly decreased spermine and spermidine levels while increasing 5'-methylthioadenosine. Betaine treatment restored normal spermine and spermidine levels but further increased 5'-methylthioadenosine. HCU induced a 2-fold induction in expression of both S-adenosylhomocysteine hydrolase and methylenetetrahydrofolate reductase. Induction of this latter enzyme was accompanied by a 10-fold accumulation of its product, 5-methyl-tetrahydrofolate, with the potential to significantly perturb one­carbon metabolism. Expression of the cytoplasmic isoform of serine hydroxymethyltransferase was unaffected by HCU but the mitochondrial isoform was repressed indicating differential regulation of one­carbon metabolism in different sub-cellular compartments. All HCU-induced changes in enzyme expression were completely reversed by either betaine or taurine treatment. Collectively, our data show significant alterations of polyamine, folate and methionine cycle metabolism in HCU hepatic tissues that in some cases, differ significantly from those observed in plasma, and have the potential to contribute to multiple aspects of pathogenesis.


Asunto(s)
Cistationina betasintasa/genética , Homocistinuria/metabolismo , Hígado/metabolismo , Metionina/metabolismo , Adenosilhomocisteinasa/genética , Animales , Betaína/farmacología , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Ácido Fólico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Homocisteína/sangre , Homocisteína/metabolismo , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Homocistinuria/patología , Humanos , Hígado/enzimología , Metionina/análogos & derivados , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones , Poliaminas/metabolismo
12.
Curr Diab Rep ; 21(12): 52, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34902085

RESUMEN

PURPOSE OF REVIEW: Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS: Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , Cardiomiopatías Diabéticas/genética , Humanos , Insulina , MicroARNs/genética , Miocitos Cardíacos , Poliaminas
13.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34948004

RESUMEN

Catalytic MATα1 subunits associate into kinetically distinct homo-dimers (MAT III) and homo-tetramers (MAT I) that synthesize S-adenosylmethionine in the adult liver. Pathological reductions in S-adenosylmethionine levels correlate with MAT III accumulation; thus, it is important to know the determinants of dimer-dimer associations. Here, polar interactions (<3.5 Å) at the rat MAT I dimer-dimer interface were disrupted by site-directed mutagenesis. Heterologous expression rendered decreased soluble mutant MATα1 levels that appeared mostly as dimers. Substitutions at the B1-B2 or B3-C1 ß-strand loops, or changes in charge on helix α2 located behind, induced either MAT III or MAT I accumulation. Notably, double mutants combining neutral changes on helix α2 with substitutions at either ß-strand loop further increased MAT III content. Mutations had negligible impact on secondary or tertiary protein structure, but induced changes of 5-10 °C in thermal stability. All mutants preserved tripolyphosphatase activity, although AdoMet synthesis was only detected in single mutants. Kinetic parameters were altered in all purified proteins, their AdoMet synthesis Vmax and methionine affinities correlating with the association state induced by the corresponding mutations. In conclusion, polar interactions control MATα1 tetramerization and kinetics, diverse effects being induced by changes on opposite ß-sheet loops putatively leading to subtle variations in central domain ß-sheet orientation.


Asunto(s)
Sustitución de Aminoácidos , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/metabolismo , Animales , Metionina Adenosiltransferasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
14.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769168

RESUMEN

Thoracic aortic aneurysm (TAA) formation is a multifactorial process that results in diverse clinical manifestations and drug responses. Identifying the critical factors and their functions in Marfan syndrome (MFS) pathogenesis is important for exploring personalized medicine for MFS. Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and methionine synthase reductase (MTRR) polymorphisms have been correlated with TAA severity in MFS patients. However, the detailed relationship between the folate-methionine cycle and MFS pathogenesis remains unclear. Fbn1C1039G/+ mice were reported to be a disease model of MFS. To study the role of the folate-methionine cycle in MFS, Fbn1C1039G/+ mice were treated orally with methionine or vitamin B mixture (VITB), including vitamins B6, B9, and B12, for 20 weeks. VITB reduced the heart rate and circumference of the ascending aorta in Fbn1C1039G/+ mice. Our data showed that the Mtr and Smad4 genes were suppressed in Fbn1C1039G/+ mice, while VITB treatment restored the expression of these genes to normal levels. Additionally, VITB restored canonical transforming-growth factor ß (TGF-ß) signaling and promoted Loxl1-mediated collagen maturation in aortic media. This study provides a potential method to attenuate the pathogenesis of MFS that may have a synergistic effect with drug treatments for MFS patients.


Asunto(s)
Ácido Fólico/farmacología , Síndrome de Marfan , Mutación Missense , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Animales , Modelos Animales de Enfermedad , Fibrilina-1/genética , Fibrilina-1/metabolismo , Humanos , Síndrome de Marfan/tratamiento farmacológico , Síndrome de Marfan/enzimología , Síndrome de Marfan/genética , Ratones , Ratones Transgénicos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética
15.
Plant J ; 97(6): 1032-1047, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30480846

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a complex and destructive disease that affects over 200 plant species. To investigate the interaction of R. solanacearum and its tomato (Solanum lycopersicum) plant host, a comparative proteomic analysis was conducted in tomato stems inoculated with highly and mildly aggressive R. solanacearum isolates (RsH and RsM, respectively). The results indicated a significant alteration of the methionine cycle (MTC) and downregulation of γ-aminobutyric acid (GABA) biosynthesis. Furthermore, transcriptome profiling of two key tissues (stem and root) at three stages (0, 3 and 5 days post-inoculation) with RsH in resistant and susceptible tomato plants is presented. Transcript profiles of MTC and GABA pathways were analyzed. Subsequently, the MTC-associated genes SAMS2, SAHH1 and MS1 and the GABA biosynthesis-related genes GAD2 and SSADH1 were knocked-down by virus-induced gene silencing and the plants' defense responses upon infection with R. solanacearum RsM and RsH were analyzed. These results showed that silencing of SAHH1, MS1 and GAD2 in tomato leads to decreased resistance against R. solanacearum. In summary, the infection assays, proteomic and transcriptomic data described in this study indicate that both MTC and GABA biosynthesis play an important role in pathogenic interaction between R. solanacearum and tomato plants.


Asunto(s)
Metionina/metabolismo , Enfermedades de las Plantas/inmunología , Proteoma , Ralstonia solanacearum/fisiología , Solanum lycopersicum/inmunología , Transcriptoma , Ácido gamma-Aminobutírico/metabolismo , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Proteómica
16.
FASEB J ; 33(5): 5942-5956, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30753104

RESUMEN

Betaine-homocysteine S-methyltransferases (BHMTs) are methionine cycle enzymes that remethylate homocysteine; hence, their malfunction leads to hyperhomocysteinemia. Epidemiologic and experimental studies have revealed a correlation between hyperhomocysteinemia and hearing loss. Here, we have studied the expression of methionine cycle genes in the mouse cochlea and the impact of knocking out the Bhmt gene in the auditory receptor. We evaluated age-related changes in mouse hearing by recording auditory brainstem responses before and following exposure to noise. Also, we measured cochlear cytoarchitecture, gene expression by RNA-arrays and quantitative RT-PCR, and metabolite levels in liver and plasma by HPLC. Our results indicate that there is an age-dependent strain-specific expression of methionine cycle genes in the mouse cochlea and a further regulation during the response to noise damage. Loss of Bhmt did not cause an evident impact in the hearing acuity of young mice, but it produced higher threshold shifts and poorer recovery following noise challenge. Hearing loss was associated with increased cochlear injury, outer hair cell loss, altered expression of cochlear methionine cycle genes, and hyperhomocysteinemia. Our results suggest that BHMT plays a central role in the homeostasis of cochlear methionine metabolism and that Bhmt2 up-regulation could carry out a compensatory role in cochlear protection against noise injury in the absence of BHMT.-Partearroyo, T., Murillo-Cuesta, S., Vallecillo, N., Bermúdez-Muñoz, J. M., Rodríguez-de la Rosa, L., Mandruzzato, G., Celaya, A. M., Zeisel, S. H., Pajares, M. A., Varela-Moreiras, G., Varela-Nieto, I. Betaine-homocysteine S-methyltransferase deficiency causes increased susceptibility to noise-induced hearing loss associated with plasma hyperhomocysteinemia.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/fisiología , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Pérdida Auditiva Provocada por Ruido/sangre , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Animales , Apoptosis , Betaína-Homocisteína S-Metiltransferasa/genética , Cromatografía Líquida de Alta Presión , Femenino , Perfilación de la Expresión Génica , Genotipo , Audición , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Factores de Tiempo
17.
EMBO J ; 34(13): 1773-85, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-25979827

RESUMEN

Lat1 (SLC7A5) is an amino acid transporter often required for tumor cell import of essential amino acids (AA) including Methionine (Met). Met is the obligate precursor of S-adenosylmethionine (SAM), the methyl donor utilized by all methyltransferases including the polycomb repressor complex (PRC2)-specific EZH2. Cell populations sorted for surface Lat1 exhibit activated EZH2, enrichment for Met-cycle intermediates, and aggressive tumor growth in mice. In agreement, EZH2 and Lat1 expression are co-regulated in models of cancer cell differentiation and co-expression is observed at the invasive front of human lung tumors. EZH2 knockdown or small-molecule inhibition leads to de-repression of RXRα resulting in reduced Lat1 expression. Our results describe a Lat1-EZH2 positive feedback loop illustrated by AA depletion or Lat1 knockdown resulting in SAM reduction and concomitant reduction in EZH2 activity. shRNA-mediated knockdown of Lat1 results in tumor growth inhibition and points to Lat1 as a potential therapeutic target.


Asunto(s)
Aminoácidos/metabolismo , Epigénesis Genética/fisiología , Transportador de Aminoácidos Neutros Grandes 1/fisiología , Complejo Represivo Polycomb 2/fisiología , Animales , Transporte Biológico/genética , Proliferación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas
18.
J Inherit Metab Dis ; 42(4): 673-685, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30693532

RESUMEN

Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.


Asunto(s)
Deficiencia de Ácido Fólico/metabolismo , Deficiencia de Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Ácido Fólico/farmacología , Humanos , Metilmalonil-CoA Mutasa/metabolismo , Vitamina B 12/farmacología
19.
J Dairy Sci ; 102(9): 8559-8570, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31301843

RESUMEN

Because of its high yield and the ability of cows to graze it in situ, fodder beet (FB) has become a popular crop in grazing systems, particularly for nonlactating cows. Due to its high sugar content, however, the transition to FB must be managed carefully to avoid rumen acidosis and associated metabolic dysfunction. The initial consumption of FB reduces ruminal pH; however, it is unclear whether this affects liver metabolism and results in systemic inflammation, as has been reported during subacute ruminal acidosis from high-grain diets. We used a quantitative case study approach to undertake additional measurements on a project demonstrating the effects of FB on urinary nitrogen excretion. The objective of our component, therefore, was to determine whether the inclusion of high rates of FB in the diet of nonlactating cows changed indicators of hepatic metabolism relative to a standard diet for nonlactating grazing cows. During the nonlactating period, multiparous, pregnant Holstein-Friesian cows were randomly assigned (n = 15 per treatment) to either pasture (8 kg of DM/cow per day) with corn silage (4 kg of DM/cow per day; PA) or transitioning onto an FB diet (8 kg of DM/cow per day) with pasture silage (4 kg of DM/cow per day; BT) over 14 d. Blood was sampled and the liver was biopsied during the adaptation period and after 7 d of full diet allocation. The hepatic expression of genes involved in peroxisomal oxidation was increased in cows adapting to FB, whereas the expression of genes involved in mitochondrial oxidation was increased when cows were on their full allocation of FB. These results indicate changes to fatty acid metabolism with FB consumption. Expression of 2 genes involved in the unfolded protein response was greater during the adaptation period in cows consuming FB, potentially reflecting negative effects of transitioning onto the FB diet on hepatic metabolism. Interestingly, expression of genes involved in the methionine cycle was increased in the BT cows. We hypothesize that this is a result of FB betaine absorption, although it is unclear to what extent betaine escapes ruminal degradation. While on the full diet allocation, there were lower serum concentrations of markers of hepatic stress in BT cows and no difference in expression of genes involved in oxidative stress compared with pasture-fed cows. However, there was an increase in plasma haptoglobin concentrations, indicative of an acute inflammatory response in BT cows. From this case study, we conclude that the results indicate no negative effects of the FB diet on liver metabolism and, possibly, positive effects on hepatic function. It appears, therefore, that the transition of nonlactating cows onto an FB diet can be managed to minimize the negative effects of the high sugar intake. Further research on the amount of betaine that escapes ruminal degradation in cows consuming FB would be of value to better understand whether betaine reduces liver damage in dairy cows consuming FB.


Asunto(s)
Beta vulgaris , Bovinos/metabolismo , Dieta/veterinaria , Hígado/metabolismo , Alimentación Animal/efectos adversos , Animales , Antioxidantes/análisis , Beta vulgaris/efectos adversos , Beta vulgaris/metabolismo , Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Concentración de Iones de Hidrógeno , Lactancia/fisiología , Leche/química , Nitrógeno/orina , Embarazo , Rumen/química , Zea mays
20.
BMC Vet Res ; 14(1): 364, 2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466432

RESUMEN

BACKGROUND: Assuming that part of Methionine (Met) is converted into Cystine (Cys), but ignoring the rates with which such phenomenon occurs may lead to an excessive supply of Met in poultry diets. Such inconvenient could be easily avoided with the knowledge of the ideal Met:Cys/Total sulfur amino acids (TSAA) ratio and the rates of Met conversion into Cys. RESULTS: Met sources did not affect performance. Met:Cys/TSAA ideal ratio was determined using curvilinear-plateau regression model. Both optimum body weight gain and feed conversion ratio were estimated in 1007 g/day and 1.49, respectively, at 52% Met/TSAA ratio. Feed intake was not affected by Met:Cys/TSAA ratios. In the labelled amino acid assay, the rates with which Met was converted into Cys ranged from 27 to 43% in response to changes in Met:Cys/TSAA ratios, being higher at 56:44. CONCLUSION: Based on performance outcomes, the minimum concentration of Met relative to Cys in diets for broilers from 14 to 28 d of age based on a TSAA basis, is 52% (52:48 Met:Cys/TSAA). The outcomes from labelled amino acid assay indicate that highest the Met supply in diets, the highest is its conversion into Cys.


Asunto(s)
Aminoácidos Sulfúricos/metabolismo , Alimentación Animal/análisis , Pollos , Cistina/metabolismo , Metionina/metabolismo , Animales , Marcaje Isotópico/veterinaria , Masculino , Isótopos de Nitrógeno , Necesidades Nutricionales , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA